Câu hỏi:

20/08/2020 1,570

Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:x=2ty=tz=4 và d2:x=3t'y=t'z=0. Viết phương trình mặt cầu (S) có bán kính nhỏ nhất tiếp xúc với cả hai đường thẳng d1 và d2.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Gọi tâm mặt cầu cần tìm là I và H,K lần lượt là hình chiếu của I lên các đường thẳng d1,d2.

Ta có: IH+IKHKad1,d2. Dấu bằng khi HK là đường vuông góc chung của d1,d2và I là trung điểm của HK.

Khi đó: H2a,a,4 và K3b,b,0KH¯2a+b3;ab;4

Đường thẳng d1,d2 có vecto chỉ phương lần lượt là u1¯=2;1;0 và u2¯1;1;0 nên:

KH¯.u1¯=0KH¯.u2¯=022a+b3+ab+0.4=02a+b3+ab+0.4=02a+b3=ab=0a=b=1

Suy ra trung điểm của HK là I2;1;2 và bán kính của mặt cầu (S) là R=HK2=2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án B.

Q//P nên mặt phẳng (Q) có dạng:

2x2y+z+m=0 với m5

Mặt phẳng (P) đi qua điểm M1;1;5. Theo đề:

dP,Q=3dM,Q=32.12.1+5+m22+22+12=3m=4m=14Q:2x2y+z+4=0Q:2x2y+z14=0

Câu 2

Viết F(x) là một nguyên hàm của hàm số fx=sinx1+3cosx và Fπ2=2. Tính F(0)

Lời giải

Đáp án B.

0π2sinx1+3cosxdx=130π2d1+3cosx1+3cosx=ln1+3cosx3π20=Fπ2F0=ln43F0=22ln23.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay