Câu hỏi:

23/08/2020 1,756 Lưu

Một hình trụ có diện tích xung quanh bằng 4π thiết diện qua trục là hình vuông. Một mặt phẳng α song song với trục, cắt hình trụ theo thiết diện là tứ giác ABB’A’, biết một cạnh của thiết diện là một dây cung của đường tròn đáy của hình trụ và căng một cung 120°. Tính diện tích thiết diện ABB’A’?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C.

Gọi R,h,l lần lượt là bán kính đáy, chiều cao, đường sinh của hình trụ.

Ta có diện tích xung quanh Sxq=4π2πRl=4πRl=2. 

Giả sử AB là một dây cung của đường tròn đáy của hình trụ và căng một cung 120°. Vì ABA’A’ là hình chữ nhật có AA' = h = l.

Xét tam giác OAB cân tại O, có OA=OB=RAOB^=120°AB=R3

Vậy diện tích cần tính là SABB'A'=AB.AA'=R3.1=23.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A.

Diện tích của (H) bằng S=02xdx+24x-x-2dx=103.

Lời giải

Đáp án C.

Gọi thiết diện mặt cắt là hình vuông ABCD.

Xét mặt đáy tâm O như hình vẽ. Vì thiết diện qua trục là hình vuông cạnh 2a nên chiều cao của hình trụ OO' = 2a = BC và OA = a. 

AB=2OA2-OM2=a3 

Diện tích thiết diện cần tính: AB.CD=2a23.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP