Câu hỏi:

24/08/2020 254 Lưu

Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình thang vuông tại A và B với AB = BC = a, AD = 2a. Cạnh SA=2a và SA vuông góc với mặt phẳng (ABCD). Gọi M là trung điểm của cạnh AB và α là mặt phẳng qua M và vuông góc với AB. Diện tích thiết diện của mặt phẳng  với hình chóp S.ABCD là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A.

Gọi N, Q lần lượt là trung điểm của AB, CD MNABMQAB. 

Qua N kẻ đường thẳng song song với BC, cắt SC tại P.

Suy ra thiết diện của mặt phẳng α và hình chóp là MNPQ.

Vì MQ là đường trung bình của hình tháng ABCD MQ=3a2.

MN là đường trung bình của tam giác SABMN=SA2=a

NP là đường trung bình của tam giác SBC NP=BC2=a2

Vậy diện tích hình thang MNPQ là SMNPQ=MN.NP+MQ2=a2a2+3a2=a2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A.

Diện tích của (H) bằng S=02xdx+24x-x-2dx=103.

Lời giải

Đáp án C.

Gọi thiết diện mặt cắt là hình vuông ABCD.

Xét mặt đáy tâm O như hình vẽ. Vì thiết diện qua trục là hình vuông cạnh 2a nên chiều cao của hình trụ OO' = 2a = BC và OA = a. 

AB=2OA2-OM2=a3 

Diện tích thiết diện cần tính: AB.CD=2a23.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP