Câu hỏi:

01/09/2020 243 Lưu

Chọn ngẫu nhiên một số tự nhiên có 4 chữ số. Tính xác suất để số được chọn có dạng abcd, trong đó 1≤a≤b≤c≤d≤9

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Cách giải:

Xét các số x = a; y = b+1; z = c+2; t = d+3. Vì 1≤a≤b≤c≤d≤9 => 1≤x<y<z<t≤12 (*)

Và mỗi bộ 4 số (x;y;z;t) được chọn từ tập hợp {1;2;3;…;12} ta đều thu được bộ số thỏa mãn

(*). Do đó, số cách chọn 4 số trong 12 số là C124=495 số suy ra n(X) = 495

Số phần tử của không gian mẫu là n(Ω) = 9.10.10.10 = 9000

Vậy xác suất cần tính là 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A

Phương pháp:

Sử dụng công thức SHTQ của CSC: un=u1+(n-1)d và công thức tổng n số hạng đầu tiên  của  CSC:

Cách giải:

Lời giải

Đáp án B

Phương pháp:

Giải phương trình y’ = 0 tìm các điểm cực trị B, C của đồ thị hàm số và tính diện tích tam giác OBC.

Cách giải: TXĐ: D = R

Ta có:

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP