Câu hỏi:
01/09/2020 194Chọn ngẫu nhiên một số tự nhiên có 4 chữ số. Tính xác suất để số được chọn có dạng abcd, trong đó 1≤a≤b≤c≤d≤9
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Đáp án C
Cách giải:
Xét các số x = a; y = b+1; z = c+2; t = d+3. Vì 1≤a≤b≤c≤d≤9 => 1≤x<y<z<t≤12 (*)
Và mỗi bộ 4 số (x;y;z;t) được chọn từ tập hợp {1;2;3;…;12} ta đều thu được bộ số thỏa mãn
(*). Do đó, số cách chọn 4 số trong 12 số là C412=495 số suy ra n(X) = 495
Số phần tử của không gian mẫu là n(Ω) = 9.10.10.10 = 9000
Vậy xác suất cần tính là
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho cấp số cộng (un) có u2013+u6=1000. Tổng 2018 số hạng đầu tiên của cấp số cộng đó là:
Câu 2:
Gọi m1, m2 là các giá trị của tham số m để đồ thị hàm số y = 2x3 – 3x2 + m = 1 có hai điểm cực trị B, C sao cho tam giác OBC có diện tích bằng 2, với O là gốc tọa độ. Tính m1, m2
Câu 4:
Cho hàm số y = –2x3 + bx2 + cx + d có đồ thị như hình dưới. Khẳng định nào sau đây đúng ?
Câu 6:
Điều kiện của tham số m để phương trình sinx + (m+1)cosx = √2 vô nghiệm là:
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
50 bài tập Nguyên hàm, tích phân và ứng dụng có lời giải
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
50 bài tập Hình học không gian có lời giải
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
45 bài tập Xác suất có lời giải
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận