Câu hỏi:

12/07/2024 7,958

Cho p là số nguyên tố lớn hơn 3 . Biết p+2 cũng là số nguyên tố. Chứng minh rằng p+1 chia hết cho 6

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

p là số nguyên tố lớn hơn 3 nên p lẻ, do đó p+12 (1)

p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 hoặc 3k+2.

Dạng 3k+1 không xảy ra.

Dạng 3k+2 cho ta p+13 (2).

Từ (1) và (2) cho ta p+16

Bình luận


Bình luận

Trương Tuấn Khang
16:19 - 11/02/2025

vào web này đi
/me-chap-nhan-du-voi-thay-giao-de-con-ko-bi-duoi/

Trương Tuấn Khang
16:17 - 11/02/2025

như gì ấy

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Nếu n = 3k+1 thì n2 = (3k+1)(3k+1) hay n2 = 3k(3k+1)+3k+1

Rõ ràng n2 chia cho 3 dư 1

Nếu n = 3k+2 thì n2 = (3k+2)(3k+2)  hay n2 = 3k(3k+2)+2(3k+2) = 3k(3k+2)+6k+3+1 nên n2 chia cho 3 dư 1.

b) p là số nguyên tố lớn hơn 3 nên không chia hết cho 3. Vậy p2 chia cho 3 dư 1 tức là  p2=3k+1 do đó p2+2003=3k+1+2003 = 3k+20043

Vậy p2+2003 là hợp số

Lời giải

Ta đã biết ba số tự nhiên lẻ liên tiếp là: 3,5,7. Ta chứng minh bộ ba này là duy nhất.

Thật vậy, giả sử có ba số nguyên tố lẻ liên tiếp nhau là: a;a+2;a+4.

Vì a là số nguyên tố lớn hơn 3 nên a không chia hết cho 3. Vậy a có dạng: a = 3k+1; 3k+2 (kN)

+ Nếu a = 3k+1 thì a+2 = 3k+3 > 3 và chia hết cho 3 => Hợp số.

+ Nếu a = 3k+2 thì a + 4 = 3k+6 > 3 và chia hết cho 3 => Hợp số.

=>Điều giả sử sai. Vậy có duy nhất bộ ba số tự  nhiên lẻ liên tiếp là số nguyên tố

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay