Câu hỏi:
12/07/2024 2,049Chứng minh rằng: Có duy nhất bộ ba số tự nhiên lẻ liên tiếp đều là số nguyên tố
Câu hỏi trong đề: Số nguyên tố, hợp số !!
Bắt đầu thiQuảng cáo
Trả lời:
Ta đã biết ba số tự nhiên lẻ liên tiếp là: 3,5,7. Ta chứng minh bộ ba này là duy nhất.
Thật vậy, giả sử có ba số nguyên tố lẻ liên tiếp nhau là: a;a+2;a+4.
Vì a là số nguyên tố lớn hơn 3 nên a không chia hết cho 3. Vậy a có dạng: a = 3k+1; 3k+2 (kN)
+ Nếu a = 3k+1 thì a+2 = 3k+3 > 3 và chia hết cho 3 => Hợp số.
+ Nếu a = 3k+2 thì a + 4 = 3k+6 > 3 và chia hết cho 3 => Hợp số.
=>Điều giả sử sai. Vậy có duy nhất bộ ba số tự nhiên lẻ liên tiếp là số nguyên tố
Hot: Đề thi cuối kì 2 Toán, Văn, Anh.... file word có đáp án chi tiết lớp 1-12 form 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho p là số nguyên tố lớn hơn 3 . Biết p+2 cũng là số nguyên tố. Chứng minh rằng p+1 chia hết cho 6
Câu 2:
a) Cho n là số nguyên tố không chia hết cho 3 . Chứng minh rằng chia cho 3 dư 1.
b) Cho p là một số nguyên tố lớn hơn 3 . Hỏi là số nguyên tố hay hợp số
Đề kiểm tra Giữa kì 2 Toán 6 có đáp án (Mới nhất) - Đề 1
Dạng 4: Một số bài tập nâng cao về lũy thừa
Đề kiểm tra Giữa kì 2 Toán 6 có đáp án (Mới nhất) - Đề 2
Đề thi Cuối học kì 2 Toán 6 có đáp án (Đề 1)
31 câu Trắc nghiệm Toán 6 Kết nối tri thức Bài 1: Tập hợp có đáp án
Dạng 5: Giải các bài toán thực tế có liên quan đến đoạn thẳng, độ dài đoạn thẳng và trung điểm của đoạn thẳng có đáp án
Dạng 1: tỉ số của hai đại lượng có đáp án
Đề kiểm tra Giữa kì 2 Toán 6 có đáp án (Mới nhất) - Đề 11
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận