Câu hỏi:

12/07/2024 1,966

Chứng minh rằng: Có duy nhất bộ ba số tự nhiên lẻ liên tiếp đều là số nguyên tố

Câu hỏi trong đề:   Số nguyên tố, hợp số !!

Sách mới 2k7: Sổ tay Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 30k).

Sổ tay Toán-lý-hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta đã biết ba số tự nhiên lẻ liên tiếp là: 3,5,7. Ta chứng minh bộ ba này là duy nhất.

Thật vậy, giả sử có ba số nguyên tố lẻ liên tiếp nhau là: a;a+2;a+4.

Vì a là số nguyên tố lớn hơn 3 nên a không chia hết cho 3. Vậy a có dạng: a = 3k+1; 3k+2 (kN)

+ Nếu a = 3k+1 thì a+2 = 3k+3 > 3 và chia hết cho 3 => Hợp số.

+ Nếu a = 3k+2 thì a + 4 = 3k+6 > 3 và chia hết cho 3 => Hợp số.

=>Điều giả sử sai. Vậy có duy nhất bộ ba số tự  nhiên lẻ liên tiếp là số nguyên tố

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho p là số nguyên tố lớn hơn 3 . Biết p+2 cũng là số nguyên tố. Chứng minh rằng p+1 chia hết cho 6

Xem đáp án » 12/07/2024 5,990

Câu 2:

a) Cho n là số nguyên tố không chia hết cho 3 . Chứng minh rằng n2 chia cho 3  dư 1.

b) Cho p  là một số nguyên tố lớn hơn 3 . Hỏi p2+2003 là số nguyên tố hay hợp số

Xem đáp án » 12/07/2024 2,823

Bình luận


Bình luận