Câu hỏi:

13/07/2024 5,771

Hai đường thẳng AB, CD cắt nhau tại O tạo thành bốn góc không kể góc bẹt. Biết AOC^+BOD^=100°. Tính số đo của mỗi góc tạo thành.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: AOC^=BOD^ (hai góc đối đỉnh) mà  AOC^+BOD^=100° nên AOC^=BOD^=100°:2=50°.

Hai góc AOCBOC kề bù nên BOC^=180°50°=130°.

Do đó AOD^=BOC^=130° (hai góc đối đỉnh).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Liệt kê các cặp góc đối đỉnh

Ÿ Xét các cặp góc “đơn”:

Góc 1 đối đỉnh với góc 5; Góc 2 đối đỉnh với góc 6; Góc 3 đối đỉnh với góc 7; Góc 4 đối đỉnh với góc 8. Có tất cả 4 góc “đơn” đối đỉnh.

Ÿ Xét các cặp góc “ghép đôi” (ghép hai góc đơn kề nhau thành một góc “ghép đôi”):

Góc 12 đối đỉnh với góc 56; Góc 23 đối đỉnh với góc 67; Góc 34 đối đỉnh với góc 78; Góc 45 đối đỉnh với góc 81. Có tất cả 4 cặp góc “ghép đôi” đối đỉnh.

Ÿ Xét các cặp góc “ghép ba” (ghép ba góc đơn kề nhau thành một góc “ghép ba”):

Góc 123 đối đỉnh với góc 567; Góc 234 đối đỉnh với góc 678; Góc 345 đối đỉnh với góc 781; Góc 456 đối đỉnh với góc 812. Có tất cả 4 cặp góc “ghép ba” đối đỉnh.

Vậy tổng cộng có 4.3=12 cặp góc đối đỉnh.

b) Xây dựng công thức tính số cặp góc đối đỉnh.

Có 4 đường thẳng cắt nhau tại một điểm nên có: 4.2=8 (tia).

Số góc do 8 tia tạo ra là 8.72=28 (góc).

Không kể góc bẹt thì số góc còn lại là: 284=24 (góc).

Mỗi góc trong 24 góc này đều có một góc đối đỉnh với nó nên số cặp góc đối đỉnh được tạo thành là 24 : 2 = 12 (cặp).

* Nhận xét: Nếu có n đường thẳng cắt nhau tại một điểm thì số cặp góc đối đỉnh (không kể góc bẹt) được tạo thành là n(n-1).

Thật vậy, số tia do n đường thẳng cắt nhau tại một điểm tạo ra là 2n (tia).

Số góc do 2n tia tạo ra là: 2n2n12=n2n1.

Không kể n góc bẹt thì số góc còn lại là: n2n1n=2n2nn=2n22n=2nn1.

Số cặp góc đối đỉnh là: 2nn12=nn1.

Lời giải

Hai góc NOPMOP kề bù nên NOP^+MOP^=180° mà  NOP^=23MOP^ nên NOP^=180°.22+3=72°; MOP^=180°72°=108°.

Suy ra MOQ^=NOP^=72° (hai góc đối đỉnh); NOQ^=MOP^=108° (hai góc đối đỉnh)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay