Câu hỏi:

12/07/2024 2,613

Trong mặt phẳng tọa độ Oxy cho parabol (P) có phương trình y=12x2 và hai điểm A, B thuộc (P) có hoành độ lần lượt là xA=1;xB=2.

a) Tìm tọa độ của hai điểm A, B.

b) Viết phương trình đường thẳng (d) đi qua hai điểm A, B.

c)  Tính khoảng cách từ O (gốc tọa độ) đến đường thẳng (d).

Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k).

Tải ngay

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

 

a) Vì A, B thuộc (P) nên:

xA=1yA=12-12=12xB=2yB=1222=2A1;12 , B(2;2)

b) Gọi phương trình đường thẳng (d) là y = ax + b.

Ta có hệ phương trình:

a+b=122a+b=23a=322a+b=2a=12b=1

Vậy (d): y=12x+1.

c) (d) cắt trục Oy tại điểm C(0; 1) và cắt trục Ox tại điểm D(– 2; 0)

=>  OC = 1 và OD = 2

Gọi h là khoảng cách từ O tới (d).

Áp dụng hệ thức về cạnh và đường cao vào  vuông OCD, ta có:

1h2=1OC2+1OD2=112+122=54h=255

Vậy khoảng cách từ gốc O tới (d) là 255.

 

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho phương trình: x22(m+1)x+m2+m1=0 (m là tham số).

a) Giải phương trình với m= 0.

b) Tìm m để phương trình có hai nghiệm phân biệt x1,x2 thỏa mãn điều kiện:

1x1+1x2=4.

Xem đáp án » 12/07/2024 10,222

Câu 2:

Cho tứ  giác ABCD nội tiếp đường tròn (O; R). Gọi I là giao điểm AC và BD. Kẻ IH vuông góc với AB; IK vuông góc với AD (HAB;KAD).

a) Chứng minh tứ giác AHIK nội tiếp đường tròn.

b) Chứng minh rằng IA.IC = IB.ID.

c) Chứng minh rằng tam giác HIK và tam giác BCD đồng dạng.

d) Gọi S là diện tích tam giác ABD, S’ là diện tích tam giác HIK. Chứng minh  rằng:    S'SHK24.AI2      

 

Xem đáp án » 12/07/2024 7,933

Câu 3:

Giải hệ phương trình: 2xy=3x2+y=5

Xem đáp án » 12/07/2024 1,943

Câu 4:

Giải phương trình: x+121=0

Xem đáp án » 12/07/2024 1,180

Câu 5:

Giải phương trình : x343=(x2+4)23+42.

Xem đáp án » 12/07/2024 551
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua