Câu hỏi:

12/07/2024 2,077

Trong mặt phẳng tọa độ Oxy cho parabol (P) có phương trình y=12x2 và hai điểm A, B thuộc (P) có hoành độ lần lượt là xA=1;xB=2.

a) Tìm tọa độ của hai điểm A, B.

b) Viết phương trình đường thẳng (d) đi qua hai điểm A, B.

c)  Tính khoảng cách từ O (gốc tọa độ) đến đường thẳng (d).

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

 

a) Vì A, B thuộc (P) nên:

xA=1yA=12-12=12xB=2yB=1222=2A1;12 , B(2;2)

b) Gọi phương trình đường thẳng (d) là y = ax + b.

Ta có hệ phương trình:

a+b=122a+b=23a=322a+b=2a=12b=1

Vậy (d): y=12x+1.

c) (d) cắt trục Oy tại điểm C(0; 1) và cắt trục Ox tại điểm D(– 2; 0)

=>  OC = 1 và OD = 2

Gọi h là khoảng cách từ O tới (d).

Áp dụng hệ thức về cạnh và đường cao vào  vuông OCD, ta có:

1h2=1OC2+1OD2=112+122=54h=255

Vậy khoảng cách từ gốc O tới (d) là 255.

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tứ  giác ABCD nội tiếp đường tròn (O; R). Gọi I là giao điểm AC và BD. Kẻ IH vuông góc với AB; IK vuông góc với AD (HAB;KAD).

a) Chứng minh tứ giác AHIK nội tiếp đường tròn.

b) Chứng minh rằng IA.IC = IB.ID.

c) Chứng minh rằng tam giác HIK và tam giác BCD đồng dạng.

d) Gọi S là diện tích tam giác ABD, S’ là diện tích tam giác HIK. Chứng minh  rằng:    S'SHK24.AI2      

 

Xem đáp án » 12/07/2024 5,951

Câu 2:

Cho phương trình: x22(m+1)x+m2+m1=0 (m là tham số).

a) Giải phương trình với m= 0.

b) Tìm m để phương trình có hai nghiệm phân biệt x1,x2 thỏa mãn điều kiện:

1x1+1x2=4.

Xem đáp án » 12/07/2024 5,199

Câu 3:

Giải hệ phương trình: 2xy=3x2+y=5

Xem đáp án » 12/07/2024 1,786

Câu 4:

Giải phương trình: x+121=0

Xem đáp án » 12/07/2024 1,115

Câu 5:

Giải phương trình : x343=(x2+4)23+42.

Xem đáp án » 12/07/2024 512

Bình luận


Bình luận