Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).
Quảng cáo
Trả lời:
- Từ mỗi đỉnh của ngũ giác vẽ được 2 đường chéo. Khi đó, vẽ được tất cả 2.5 = 10 đường chéo.
Vì mỗi đường chéo được tính hai lần nên ngũ giác có tất cả 5 đường chéo.
- Tương tự: lục giác từ 6 đỉnh vẽ được 3.6 = 18 đường chéo. Vì mỗi đường chéo được tính 2 lần nên lục giác có tất car9 đường chéo.
- Từ mỗi đỉnh của hình n - giác (lồi) vẽ được (n - 1) đoạn thẳng nối đỉnh đó với (n - 1) đỉnh còn lại của đa giác, trong đó hai đoạn thẳng trùng với hai cạnh của đa giác sẽ không tính vào số đường chéo.
Þ Qua mỗi đỉnh của hình n - giác vẽ được n - 1 - 2 = n - 3 đường chéo.
Þ Hình n - giác vẽ được n (n - 3) đường chéo
Vì mỗi đường chéo được tính 2 lần nên hình n - giác có tất cả đường chéo.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
a) Tính tổng số đo các góc ngoài của tứ giác, ngũ giác, thập giác,
b) Chứng minh tổng số đo các góc ngoài của một đa giác (lồi) là 360°.
Câu 2:
a) Chứng minh tổng số đo các góc trong của một hình
n - giác là (n - 2)180°.
b) Tính tổng số đo các góc của một đa giác 12 cạnh.
Câu 4:
Mỗi góc của một đa giác đều n cạnh bằng 120°. Tính số đường chéo của đa giác
Câu 6:
Cho hình thoi ABCD có = 60°. Gọi M, N, P, Q lần lượt là trung điểm các cạnh AB, BC, CD, DA. Chứng minh đa giác MBNPDQ là lục giác đều
Câu 7:
Chứng minh trung điểm các cạnh của một ngũ giác đều là các đỉnh của một ngũ giác đều
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
15 câu Trắc nghiệm Toán 8 KNTT Bài 1: Đơn thức có đáp án
10 Bài tập Bài toán thực tiễn liên quan đến thể tích, diện tích xung quanh của hình chóp tứ giác đều (có lời giải)
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 2)
Đề kiểm tra Cuối kì 1 Toán 8 CTST có đáp án (Đề 1)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
về câu hỏi!