Câu hỏi:
13/07/2024 2,744Cho đường tròn (O; R) và dây BC cố định không đi qua tâm. Trên tia đối của tia BC lấy điểm A (A khác B). Từ A kẻ hai tiếp tuyến AM và AN với đường tròn (O) (M và N là các tiếp điểm). Gọi I là trung điểm của BC
1) Chứng minh A, O, M, N, I cùng thuộc một đường tròn và IA là tia phân giác của góc MIN.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Theo giả thiết AMO = ANO = AIO = 90o = > 5 điểm A, O, M, N, I thuộc đường tròn đường kính AO 0,25
=> AIN = AMN, AIM = ANM (Góc nội tiếp cùng chắn một cung)
AM = AN => ∆AMN cân tại A => AMN = ANM
=> AIN = AIM => đpcm
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 3:
Cho a, b là các số dương thỏa mãn điều kiện Chứng minh bất đẳng thức
Câu 6:
Cho đường tròn (O; R) và dây BC cố định không đi qua tâm. Trên tia đối của tia BC lấy điểm A (A khác B). Từ A kẻ hai tiếp tuyến AM và AN với đường tròn (O) (M và N là các tiếp điểm). Gọi I là trung điểm của BC.
2) Gọi K là giao điểm của MN và BC. Chứng minh
về câu hỏi!