Câu hỏi:

13/07/2024 5,809

Cho a, b là các số dương thỏa mãn điều kiện (a+b)3+4ab12.  Chứng minh bất đẳng thức 11+a+11+b+2015ab2016.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có 12(a+b)3+4ab2ab3+4ab. Đặt t=ab,t>0 thì

128t3+4t22t3+t230(t1)(2t2+3t+3)0 

Do 2t2+3t+3>0,t nên t10t1. Vậy 0<ab1 

Chứng minh được 11+a+11+b21+ab,a,b>0 thỏa mãn ab1 

Thật vậy, BĐT 11+a11+ab+11+b11+ab0 

aba(1+a)(1+ab)+abb(1+b)(1+ab)0ba1+aba1+ab1+b(ba)2(ab1)(1+ab)(1+a)(1+b)0 

 

Do 0<ab1 nên BĐT này đúng

Tiếp theo ta sẽ CM 21+ab+2015ab2016,a,b>0 thỏa mãn ab1

Đặt t=ab,0<tt ta được 21+t+2015t22016 

2015t3+2015t22016t20140(t1)(2015t2+4030t+2014)0 

BĐT này đúng t:0<t1 

Vậy 11+a+11+b+2015ab2016. Đẳng thức xảy ra a = b = 1

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm các số nguyên x, y thỏa mãnx4+x2y2y+20=0.  (1)

Xem đáp án » 13/07/2024 10,552

Câu 2:

Cho x, y là hai số thực thỏa mãn xy+(1+x2)(1+y2)=1. Chứng minh rằng x1+y2+y1+x2=0.

Xem đáp án » 13/07/2024 7,386

Câu 3:

Giải hệ phương trình 2x2y2+xy5x+y+2=y2x+133xx2y1=4x+y+5x+2y2

Xem đáp án » 13/07/2024 5,790

Câu 4:

Giải phương trình 2x+3+4x2+9x+2=2x+2+4x+1. 

Xem đáp án » 13/07/2024 5,606

Câu 5:

Cho đường tròn (O; R) và dây BC cố định không đi qua tâm. Trên tia đối của tia BC lấy điểm A (A khác B). Từ A kẻ hai tiếp tuyến AM và AN với đường tròn (O) (M và N là các tiếp điểm). Gọi I là trung điểm của BC

1) Chứng minh A, O, M, N, I cùng thuộc một đường tròn và IA là tia phân giác của góc MIN.

Xem đáp án » 13/07/2024 3,980

Câu 6:

Tìm các số nguyên k để k48k3+23k226k+10 là số chính phương.

Xem đáp án » 13/07/2024 3,958
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua