Câu hỏi:

11/07/2024 17,611

Cho tam giác ABC có AB = AC. Gọi M và N lần lượt là trung điểm của các cạnh AC, AB. Chứng minh rằng: BM = CN

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét ΔABM và ΔACN có:

AB=AC  (gt)A^:  chungAM=AN  =12AC=12AB           

ΔABM=ΔACN  (c.g.c)

BM=CN (2 cạnh tương ứng)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho xOy^ khác góc bẹt. Trên cạnh Ox lấy 2 điểm A và B, trên cạnh Oy lấy hai điểm C và D sao cho OA=OC;  OB=ODOA<OB.

a)  Chứng minh ΔOAD=ΔOCB

b) Chứng minh ΔACD=ΔCAB.

Xem đáp án » 11/07/2024 16,017

Câu 2:

Cho tam giác ABC các điểm E và F lần lượt là trung điểm của các cạnh AB và AC Trên tia đối của tia FB lấy FN = FB. Trên tia đối của tia EC lấy EM = EC. Chứng minh:

a) AB // NC, AC // MB

b) ΔAEM=ΔBEC,  ΔAFN=ΔCFB

c) Ba điểm M, A, N thẳng hàng

d) AM = AN

Xem đáp án » 12/07/2024 6,113

Câu 3:

a) Vẽ ΔABC có B^=600,   AB=BC=3cm.

b) Đo độ dài cạnh AC

Xem đáp án » 11/07/2024 3,157

Câu 4:

Đố vui: Cho tam giác ABC có góc A là góc tù AB < AC, lấy A làm tâm vẽ đường tròn (A;AB). Đường tròn qua B và cắt BC ở E.

Một học sinh chứng minh:

Xét ΔABC và ΔAEC có:

          C^ chung;                                                                

           AC chung;

           AB = AE (cùng bán kính).

Vậy ΔABC=ΔAEC  (c.g.c)

Suy ra BAC^=EAC^. Mà BAC^ là góc tù, EAC^ là góc nhọn. Vậy góc tù bằng góc nhọn.

Em hãy tìm chỗ sai

Xem đáp án » 12/07/2024 1,779

Câu 5:

Cho tam giác ABC vuông tại A. Tia phân giác của  cắt AC tại D. Trên BC lấy M sao cho BM = BA. Chứng minh: DMBC

Xem đáp án » 11/07/2024 1,461

Câu 6:

Cho tam giác ABC có AB=AC. Tia phân giác của BAC^ cắt BC ở D. Chứng minh rằng AD là đường trung trực của đoạn thẳng BC

Xem đáp án » 27/12/2020 861
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua