Câu hỏi trong đề: Bộ Đề thi vào 10 môn Toán có đáp án !!
Quảng cáo
Trả lời:
a, Δ =
Phương trình có 2 nghiệm phân biệt
Vậy phương trình đã cho có tập nghiệm S = {–1;8/3}
b,
Vậy hệ phương trình đã cho có nghiệm (x; y) = (1; –1)
c,
Đặt phương trình trở thành:
Phương trình có nghiệm t = 1 và t = (do phương trình có dạng a + b + c = 0)
Với t = 1 ta có:
Với t = ta có:
Vậy tập nghiệm của phương trình là S = {}
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi số hàng ghế lúc đầu là x ( hàng) (x ∈ N,x > 0)
=> Số ghế mỗi hàng lúc đầu là (ghế)
Số hàng ghế lúc sau là x + 1 hàng
Số ghế mỗi hàng lúc sau là + 1 (ghế)
Theo bài ra, có 400 người đến họp nên ta có phương trình
(x+1)( + 1) = 400
<=> x + – 39 = 0
<=>
<=> x = 24 hoặc x = 15
* Với x = 24 thì số hàng ghế lúc đầu là 24 hàng và mỗi hàng có 360 : 24 = 15 ghế.
* Với x = 15 thì số hàng ghế lúc đầu là 15 hàng và mỗi hàng có 360 : 15 = 24 ghế
Lời giải
1. Xét tứ giác ACGO có:
∠CGA = (CG ⊥ AG)
∠COA = (CO ⊥ AO)
=> 2 đỉnh G và O cùng nhìn CA dưới 1 góc bằng nhau
=> Tứ giác ACGO là tứ giác nội tiếp
2. Tứ giác ACGO là tứ giác nội tiếp
=> ∠COG = ∠CAG (2 góc nội tiếp cùng chắn cung CG)
Mà ∠CAG = ∠COF/2 (góc nội tiếp bằng nửa góc ở tâm cùng chắn 1 cung)
=> ∠COG = ∠COF/2
=> OG là tia phân giác của góc ∠COF
3. Xét (O): ∠FCB = ∠FAB (2 góc nội tiếp cùng chắn cung FB)
Tứ giác ACGO là tứ giác nội tiếp
=> ∠OCG = ∠FAB (2 góc nội tiếp cùng chắn cung GO)
=> ∠FCB∠ = ∠OCG
Xét ΔCGO và ΔCFB có:
∠OCG = ∠FCB
∠GOC = ∠FBC (= ∠CAF )
=> ΔCGO ∼ ΔCFB (g.g)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.