Câu hỏi:

31/12/2020 4,238 Lưu

Cho nửa đường tròn tâm O, đường kính AB = 2R. Đường thẳng qua O và vuông góc với AB cắt cung AB tại C. Gọi E là trung điểm của đoạn thẳng BC, AE cắt nửa đường tròn tâm O tại F (F khác A). Đường thẳng qua điểm C và vuông góc với AF tại G cắt AB tại H

1. Chứng minh tức giác CGOA nội tiếp. Tính số đo của góc OGH

2. Chứng minh OG là tia phân giác của góc COF

3. Chứng minh hai tam giác CGO và CFB đồng dạng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

1. Xét tứ giác ACGO có:

∠CGA = 900 (CG ⊥ AG)

∠COA = 900 (CO ⊥ AO)

=> 2 đỉnh G và O cùng nhìn CA dưới 1 góc bằng nhau

=> Tứ giác ACGO là tứ giác nội tiếp

2. Tứ giác ACGO là tứ giác nội tiếp

=> ∠COG = ∠CAG (2 góc nội tiếp cùng chắn cung CG)

Mà ∠CAG = ∠COF/2 (góc nội tiếp bằng nửa góc ở tâm cùng chắn 1 cung)

=> ∠COG = ∠COF/2

=> OG là tia phân giác của góc ∠COF

3. Xét (O): ∠FCB = ∠FAB (2 góc nội tiếp cùng chắn cung FB)

Tứ giác ACGO là tứ giác nội tiếp

=> ∠OCG = ∠FAB (2 góc nội tiếp cùng chắn cung GO)

=> ∠FCB∠ = ∠OCG

Xét ΔCGO và ΔCFB có:

∠OCG = ∠FCB

∠GOC = ∠FBC (= ∠CAF )

=> ΔCGO ∼ ΔCFB (g.g)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi số hàng ghế lúc đầu là x ( hàng) (x ∈ N,x > 0)

=> Số ghế mỗi hàng lúc đầu là 360x (ghế)

Số hàng ghế lúc sau là x + 1 hàng

Số ghế mỗi hàng lúc sau là 360x + 1 (ghế)

Theo bài ra, có 400 người đến họp nên ta có phương trình

(x+1)(360x + 1) = 400

<=> x + 360x – 39 = 0

<=> x2-39x+360=0

<=> x = 24 hoặc x = 15

* Với x = 24 thì số hàng ghế lúc đầu là 24 hàng và mỗi hàng có 360 : 24 = 15 ghế.

* Với x = 15 thì số hàng ghế lúc đầu là 15 hàng và mỗi hàng có 360 : 15 = 24 ghế

Lời giải

a, Bảng giá trị

Đồ thị (P) là đường parabol nằm phía trên trục hoành, nhận trục Oy làm trục đối xứng và nhận điểm O (0,0) là đỉnh và điểm thấp nhất

b, Phương trình hoành độ giao điểm của (P) và (d) là:

x2 = (2m – 1)x – m + 2

<=>x2 – (2m – 1)x + m – 2 = 0

Δ = (2m – 1)2 – 4(m – 2) = 4m2 – 8m + 10 = 4(m – 1)2 + 6 > 0 ∀m

Vậy phương trình luôn có 2 nghiệm phân biệt với mọi m

Theo định lí Vi-et ta có:

ta có: y1 = (2m – 1)x1 – m + 2

y2 = (2m – 1)x2 – m + 2

Khi đó:

x1 y1 + x2 y2 = x1 [(2m – 1)x1 – m + 2] + x2 [(2m – 1)x2 – m + 2]

=(2m – 1)(x12 + x22 ) + (2 – m)(x1 + x2 )

=(2m – 1)[(x1 + x2 )2 – 2x1 x2 ] + (2 – m)(x1 + x2 )

=(2m – 1)[(2m – 1)2 – 2(m – 2)] + (2 – m)(2m – 1)

=(2m – 1)3 – (2 – m)(2m – 1)

=(2m – 1)[(2m – 1)2 – (2 – m)]

=(2m – 1)(4m2 – 3m – 1)

Theo bài ra: x1y1 + x2y2 = 0

<=>(2m – 1)(4m2 – 3m – 1) = 0

Vậy có 3 giá trị của m thỏa mãn yêu cầu đề bài là m = 1; 1/2; –1/4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP