Cho Parabol (P) và đường thẳng (d) y = (2m – 1)x – m + 2 (m là tham số)
a, Vẽ đồ thị hàm số P
b, Chứng minh rằng với mọi m đường thẳng (d) luôn cắt (P) tại hai điểm phân biệt. Tìm các giá trị của m để đường thẳng (d) luôn cắt (P) tại hai điểm phân biệt A(x1; y1) và B(x2;y2) thỏa x1y1 + x2y2 = 0
Câu hỏi trong đề: Bộ Đề thi vào 10 môn Toán có đáp án !!
Quảng cáo
Trả lời:
a, Bảng giá trị
Đồ thị (P) là đường parabol nằm phía trên trục hoành, nhận trục Oy làm trục đối xứng và nhận điểm O (0,0) là đỉnh và điểm thấp nhất
b, Phương trình hoành độ giao điểm của (P) và (d) là:
x2 = (2m – 1)x – m + 2
<=>x2 – (2m – 1)x + m – 2 = 0
Δ = (2m – 1)2 – 4(m – 2) = 4m2 – 8m + 10 = 4(m – 1)2 + 6 > 0 ∀m
Vậy phương trình luôn có 2 nghiệm phân biệt với mọi m
Theo định lí Vi-et ta có:
ta có: y1 = (2m – 1)x1 – m + 2
y2 = (2m – 1)x2 – m + 2
Khi đó:
x1 y1 + x2 y2 = x1 [(2m – 1)x1 – m + 2] + x2 [(2m – 1)x2 – m + 2]
=(2m – 1)(x12 + x22 ) + (2 – m)(x1 + x2 )
=(2m – 1)[(x1 + x2 )2 – 2x1 x2 ] + (2 – m)(x1 + x2 )
=(2m – 1)[(2m – 1)2 – 2(m – 2)] + (2 – m)(2m – 1)
=(2m – 1)3 – (2 – m)(2m – 1)
=(2m – 1)[(2m – 1)2 – (2 – m)]
=(2m – 1)(4m2 – 3m – 1)
Theo bài ra: x1y1 + x2y2 = 0
<=>(2m – 1)(4m2 – 3m – 1) = 0
Vậy có 3 giá trị của m thỏa mãn yêu cầu đề bài là m = 1; 1/2; –1/4
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi số hàng ghế lúc đầu là x ( hàng) (x ∈ N,x > 0)
=> Số ghế mỗi hàng lúc đầu là (ghế)
Số hàng ghế lúc sau là x + 1 hàng
Số ghế mỗi hàng lúc sau là + 1 (ghế)
Theo bài ra, có 400 người đến họp nên ta có phương trình
(x+1)( + 1) = 400
<=> x + – 39 = 0
<=>
<=> x = 24 hoặc x = 15
* Với x = 24 thì số hàng ghế lúc đầu là 24 hàng và mỗi hàng có 360 : 24 = 15 ghế.
* Với x = 15 thì số hàng ghế lúc đầu là 15 hàng và mỗi hàng có 360 : 15 = 24 ghế
Lời giải
1. Xét tứ giác ACGO có:
∠CGA = (CG ⊥ AG)
∠COA = (CO ⊥ AO)
=> 2 đỉnh G và O cùng nhìn CA dưới 1 góc bằng nhau
=> Tứ giác ACGO là tứ giác nội tiếp
2. Tứ giác ACGO là tứ giác nội tiếp
=> ∠COG = ∠CAG (2 góc nội tiếp cùng chắn cung CG)
Mà ∠CAG = ∠COF/2 (góc nội tiếp bằng nửa góc ở tâm cùng chắn 1 cung)
=> ∠COG = ∠COF/2
=> OG là tia phân giác của góc ∠COF
3. Xét (O): ∠FCB = ∠FAB (2 góc nội tiếp cùng chắn cung FB)
Tứ giác ACGO là tứ giác nội tiếp
=> ∠OCG = ∠FAB (2 góc nội tiếp cùng chắn cung GO)
=> ∠FCB∠ = ∠OCG
Xét ΔCGO và ΔCFB có:
∠OCG = ∠FCB
∠GOC = ∠FBC (= ∠CAF )
=> ΔCGO ∼ ΔCFB (g.g)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.