Câu hỏi:

13/07/2024 14,965

Cho đường tròn (O ; R) đường kính AB và điểm M bất kì thuộc đường tròn (M ≠ A, B) . Kẻ tiếp tuyến tại A của đường tròn, tiếp tuyến này cắt tia BM ở N. Tiếp tuyến của đường tròn tại M cắt AN ở D

a, Chứng minh: 4 điểm A, D, M , O cùng thuộc một đường tròn

b, Chứng minh: OD // BM và suy ra D là trung điểm của AN

c, Đường thẳng kẻ qua O và vuông góc với BM cắt tia DM ở E. Chứng minh: BE là tiếp tuyến của đường tròn (O ; R)

d, Qua O kẻ đường thẳng vuông góc với AB và cắt đường thẳng BM tại I. Gọi giao điểm của AI và BD là J. Khi điểm M di động trên (O ; R) thì J chạy trên đường nào?

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a, Xét tứ giác ADMO có:

∠DMO = 900 (do M là tiếp tuyến của (O))

∠DAO = 900 (do AD là tiếp tuyến của (O))

=> ∠DMO + ∠DAO = 1800

=> Tứ giác ADMO là tứ giác nội tiếp

b, Do D là giao điểm của 2 tiếp tuyến DM và DA nên OD là tia phân giác của ∠AOM

=>(AOD = 1/2∠AOM

Mặt khác ta có (ABM là góc nội tiếp chắn cung AM)

=> ∠ABM = 1/2∠AOM

=> ∠AOD = ∠ABM

Mà 2 góc này ở vị trí đồng vị

=> OD // BM

Xét tam giác ABN có:

OM// BM; O là trung điểm của AB

=> D là trung điểm của AN

c, Ta có: ΔOBM cân tại O; OE ⊥ MB => OE là đường trung trực của MB

=> EM = EB = > ΔMEB cân tại E => ∠EMB = ∠EBM (1)

ΔOBM cân tại O => ∠OMB = ∠OBM (2)

Cộng (1) và (2) vế với vế, ta được:

∠EMB + ∠OMB = ∠EBM + ∠OBM ⇔ ∠EMO =∠EBO ⇔ ∠EBO = 90o

=>OB ⊥ BE

Vậy BE là tiếp tuyến của (O)

d, Lấy điểm E trên tia OA sao cho OE = OA/3

Xét tam giác ABI có OI vừa là đường cao vừa là trung tuyến

=> Tam giác ABI cân tại I => IA = IB; ∠IBA = ∠IAB

Ta có:

=> ∠NAI = ∠INA => ΔINA cân tại I => IA = IN

Tam giác NAB vuông tại A có: IA = IN = IB

=> IA là trung tuyến của tam giác NAB

Xét ΔBNA có:

IA và BD là trung tuyến; IA ∩ BD = {J}

=> J là trọng tâm của tam giác BNA

Xét tam giác AIO có:

AJAIAEAO = 23

=> JE // OI

=> J nằm trên đường thẳng d vuông góc với AB và cách O một khoảng bằng R/3.

Phần đảo: Lấy điểm J' bất kì thuộc đường thẳng d

Do d // OI (cùng vuông góc AB) nên ta có:

AJ'AIAEAO

AEAO23 => AJ'AI = 23

AI là trung tuyến của tam giác NAB

=> J' là trọng tâm tam giác NAB

Vậy khi M di chuyển trên (O) thì J di chuyển trên đường thẳng d vuông góc với AB và cách O một khoảng là R/3

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho các biểu thức: P = x-2x-3+x+1x+3+x-4x-99-x; Q = x+53-x với x ≥ 0; x ≠ 9

a, Rút gọn biểu thức P

b, Tìm x sao cho P = 3

c, Đặt M = P : Q. Tìm x để |M| < 1/2

Xem đáp án » 13/07/2024 3,280

Câu 2:

Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Hai vòi nước cùng chảy vào một bể nước cạn (không có nước) trong 1 giờ 12 phút thì đầy bể. Nếu mở vòi thứ nhất chảy trong 30 phút và vòi thứ hai chảy trong 1 giờ thì được 7/12 bể. Hỏi mỗi vòi chảy một mình thì sau bao lâu đầy bể?

Xem đáp án » 13/07/2024 2,349

Câu 3:

1. Giải hệ phương trình:

2. Cho hai hàm số: y = 2x – 1 và y = –1/2.x + 4

a, Tìm tọa độ giao điểm M của đồ thị hai hàm số trên

b, Gọi N, P lần lượt là giao điểm của hai đồ thị trên với trục Oy. Tính diện tích ΔMNP

Xem đáp án » 13/07/2024 872

Câu 4:

Cho a > 0. Tìm giá trị nhỏ nhất của P = a2+4a+1536a+81a2

Xem đáp án » 13/07/2024 422

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store