Câu hỏi trong đề: Bộ Đề thi vào 10 môn Toán có đáp án !!
Quảng cáo
Trả lời:
Với a > 0, ta có:
Vì a > 0 nên
Áp dụng bất đẳng thức Cô - si các cặp số dương và ; 4a và ta có:
Từ (1) và (2) suy ra:
Dấu "=" xảy ra khi:
Vậy giá trị nhỏ nhất của P bằng 57 tại a = 3
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a, Xét tứ giác ADMO có:
∠DMO = (do M là tiếp tuyến của (O))
∠DAO = (do AD là tiếp tuyến của (O))
=> ∠DMO + ∠DAO =
=> Tứ giác ADMO là tứ giác nội tiếp
b, Do D là giao điểm của 2 tiếp tuyến DM và DA nên OD là tia phân giác của ∠AOM
=>(AOD = 1/2∠AOM
Mặt khác ta có (ABM là góc nội tiếp chắn cung AM)
=> ∠ABM = 1/2∠AOM
=> ∠AOD = ∠ABM
Mà 2 góc này ở vị trí đồng vị
=> OD // BM
Xét tam giác ABN có:
OM// BM; O là trung điểm của AB
=> D là trung điểm của AN
c, Ta có: ΔOBM cân tại O; OE ⊥ MB => OE là đường trung trực của MB
=> EM = EB = > ΔMEB cân tại E => ∠EMB = ∠EBM (1)
ΔOBM cân tại O => ∠OMB = ∠OBM (2)
Cộng (1) và (2) vế với vế, ta được:
∠EMB + ∠OMB = ∠EBM + ∠OBM ⇔ ∠EMO =∠EBO ⇔ ∠EBO = 90o
=>OB ⊥ BE
Vậy BE là tiếp tuyến của (O)
d, Lấy điểm E trên tia OA sao cho OE = OA/3
Xét tam giác ABI có OI vừa là đường cao vừa là trung tuyến
=> Tam giác ABI cân tại I => IA = IB; ∠IBA = ∠IAB
Ta có:
=> ∠NAI = ∠INA => ΔINA cân tại I => IA = IN
Tam giác NAB vuông tại A có: IA = IN = IB
=> IA là trung tuyến của tam giác NAB
Xét ΔBNA có:
IA và BD là trung tuyến; IA ∩ BD = {J}
=> J là trọng tâm của tam giác BNA
Xét tam giác AIO có:
= =
=> JE // OI
=> J nằm trên đường thẳng d vuông góc với AB và cách O một khoảng bằng R/3.
Phần đảo: Lấy điểm J' bất kì thuộc đường thẳng d
Do d // OI (cùng vuông góc AB) nên ta có:
=
Mà = => =
AI là trung tuyến của tam giác NAB
=> J' là trọng tâm tam giác NAB
Vậy khi M di chuyển trên (O) thì J di chuyển trên đường thẳng d vuông góc với AB và cách O một khoảng là R/3
Lời giải
a, với x ≥ 0; x ≠ 9
b,
Vậy với x = 81/4 thì P = 3
c,
(do x ≥ 0 nên x + 5 > 0)
(luôn đúng)
Vậy với mọi x thỏa mãn điều kiện x ≥ 0;x ≠ 9 thì |M| < 1/2
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.