Câu hỏi:
13/07/2024 709Giải bài toán bằng cách lập phương trình hoặc hệ phương trình
Theo kế hoạch, một tổ công nhân phải làm một số sản phẩm trong một thời gian nhất định. Nếu mỗi ngày họ làm tăng thêm 5 sản phẩm so với dự định thì sẽ hoàn thành kế hoạch trước thời hạn 4 ngày. Nếu mỗi ngày họ làm ít hơn 5 sản phẩm so với dự định thì sẽ hoàn thành kế hoạch châm hơn thời hạn 5 ngày. Tính thời gian và số sản phẩm phải làm theo kế hoạch
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Gọi số sản phẩm cần làm theo dự định trong một ngày là x (sản phẩm/ ngày) ( x > 5)
Thời gian dự định làm là y (ngày) (y > 4)
=> Số sản phẩm cần làm là xy ( sản phẩm)
Nếu mỗi ngày họ làm tăng thêm 5 sản phẩm so với dự định thì sẽ hoàn thành kế hoạch trước thời hạn 4 ngày nên ta có phương trình:
(x + 5)(y – 4) = xy ⇔ –4x + 5y = 20 (1)
Nếu mỗi ngày họ làm ít hơn 5 sản phẩm so với dự định thì sẽ hoàn thành kế hoạch châm hơn thời hạn 5 ngày nên ta có phương trình:
(x – 5)(y + 5) = xy ⇔ 5x – 5y = 25 (2)
Từ (1) và (2) ta có hệ phương trình:
Khi đó số sản phẩm cần làm là: x.y = 45.40 = 1800 (sản phẩm)
Vậy số sản phẩm cần làm là 1800 sản phẩm
Số ngày dự định làm là 40 ngày
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho đường tròn tâm (O) với dây AB cố định không phải đường kính. Gọi C là điểm thuộc cung lớn AB sao cho tam giác ABC nhọn. M; N lần lượt là điểm chính giữa của cung nhỏ AB; AC. Gọi I là giao điểm của BN và CM. Dây MN cắt AB và AC lần lượt tại H và K
a, Chứng minh tứ giác BMHI nội tiếp
b, Chứng minh MK.MN = MI.MC
c, Chứng minh tứ giác AKI cân tại K và tứ giác AHIK là hình thoi
Câu 2:
Cho a, b là 2 số thực dương thỏa mãn điều kiện ab + 4 ≤ 2b. Tìm giá trị lớn nhất của biểu thức:
P =
Câu 3:
1. Giải phương trình 2x4 + x2 – 6 = 0
2. Cho parabol (P): y = x2 và đường thẳng (d): y = mx + 2
a, Với m = –1 : vẽ parabol (P) và đường thẳng (d) trên cùng một hệ trục tọa độ. Tìm tọa độ các giao điểm của parabol (P) và đường thẳng (d).
b, Tìm các giá trị của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ x1, x2 sao cho x1 – 2x2 = 5
Câu 4:
Cho biểu thức:
và
với x ≥ 0, x ≠ 9, x ≠ 4
a, Tính giá trị biểu thức A khi x =
b, Rút gọn biểu thức B
c, Tìm giá trị nhỏ nhất của biểu thức P = A : B
về câu hỏi!