Câu hỏi:

13/07/2024 5,823

Cho a, b là 2 số thực dương thỏa mãn điều kiện ab + 4 ≤ 2b. Tìm giá trị lớn nhất của biểu thức:

P = aba2+2b2

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

2b ≥ ab + 4 ≥ 4ab ( Theo BĐT Cosi) 

Vậy GTLN của P là 4/33 khi 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a, Xét tứ giác HMBI có:

∠HMI = ∠HBI (2 góc nội tiếp chắn 2 cung bằng nhau AN=CN)

Mà 2 góc này cùng nhìn cạnh HI

=> Tứ giác BMHI nội tiếp

b, Xét ΔMNI và ΔMKC có:

∠KMC là góc chung

∠MNI = ∠KCM (2 góc nội tiếp chắn 2 cung bằng nhau BM=AM)

=> ΔMNI ∼ ΔMCK => MNMCMIMK => MN.MK = MC.MI

c, Xét tứ giác NKIC có:

∠KNI = ∠KCI (2 góc nội tiếp chắn 2 cung bằng nhau BM=AM)

Mà 2 góc này cùng nhìn cạnh KI

=> Tứ giác NKIC là tứ giác nội tiếp

=> ∠NKI + ∠NCI = 1800 (1)

Xét đường tròn (O) có

ANK^=ACM^ ( 2 góc nội tiếp cùng chắn cung AM)

NAK^=NCA^ (2 góc nội tiếp chắn 2 cung bằng nhau AN=CN)

=> ∠ANK + ∠NAK = ∠ACM + ∠NCA = ∠NCI (2)

Xét tam giác AKN có: ∠ANK + ∠NAK + ∠NKA = 1800 (3)

Từ (1), (2), (3) => ∠NKI = ∠NKA

Xét tam giác IKN và tam giác AKN có:

∠NKI = ∠NKA

KN là cạnh chung

∠KNI = ∠KNA (2 góc nội tiếp chắn 2 cung bằng nhau)

=> ΔIKN = ΔAKN

=> IK=AK =>ΔAKI cân tại K

Tứ giác NKIC là tứ giác nội tiếp

=> KIN^=KCN^ (2 góc nội tiếp cùng chắn cung KN)

và IKC^=BNC^ (2 góc nội tiếp cùng chắn cung IC) (*)

Mặt khác ∠KCN = ∠ABN (2 góc nội tiếp cùng chắn cung AN của (O))

∠BAC = ∠BNC (2 góc nội tiếp cùng chắc cung BC của (O))

=> KIN^=ABN^BAC^=IKC^AH//KIAK//HI

=> Tứ giác AHIK là hình bình hành

Mà IK = AK

=> Tứ giác AHIK là hình thoi

Lời giải

1. 2x4 + x2 – 6 = 0

Đặt x2 = t ( t ≥ 0), phương trình trở thành:

2t2 + t – 6 = 0

Δ = 1 – 4.2.( –6) = 49

=> Phương trình có 2 nghiệm phân biệt

Do t ≥ 0 nên t = 3/2

Vậy phương trình đã cho có nghiệm 

2.a, Với m = –1, (d): y = –x + 2

(P): y = x2

Bảng giá trị:

Đồ thị (P): y = x2 là 1 đường parabol nằm phía trên trục hoành, nhận trục Oy làm trục đối xứng và nhận điểm O (0;0) làm đỉnh

y = –x + 2

Bảng giá trị:

Phương trình hoành độ giao điểm của (P) và (d) là:

x2 = –x + 2 ⇔ x2 + x – 2 = 0

=> Phương trình có 2 nghiệm x = 1; x = –2

Khi đó tọa độ giao điểm của (P) và (d) là (1; 1) và (–2; 4)

b, Phương trình hoành độ giao điểm của (P) và (d) là:

x2 = mx + 2 ⇔ x2 – mx – 2 = 0

Δ = m2 – 4.( –2) = m2 + 8 > 0 ∀m

=> Phương trình luôn có 2 nghiệm phân biệt với mọi m

Theo hệ thức Vi-et ta có:

Theo bài ra: x1 – 2x2 = 5 ⇔ x1 = 2x2 + 5

=> (2x2 + 5) x2 = –2 ⇔ 2x22 + 5x2 + 2 = 0

Khi đó: 

Vậy có 2 giá trị của m thỏa mãn điều kiện đề bài là m = –1 ; m = 7/2

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP