Đề thi môn Toán vào lớp 10 TP Hà Nội năm 2020 - 2021 có đáp án (Đề 18)
36 người thi tuần này 4.6 21.6 K lượt thi 5 câu hỏi
🔥 Đề thi HOT:
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
12 bài tập Một số bài toán thực tế liên quan đến bất đẳng thức có lời giải
Tổng hợp các bài toán thực tế ôn thi vào 10 Toán 9 có đáp án (Phần 2: Hình học)
12 bài tập Một số bài toán thực tế liên quan đến bất phương trình bậc nhất một ẩn có lời giải
Đề ôn thi vào 10 môn Toán có đáp án (Mới nhất)- Đề số 1
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
a, Ta có x =
=> (do )
Thay vào biểu thức A ta có:
b, với x ≥ 0, x ≠ 9, x ≠ 4
c,
Áp dụng Bất đẳng thức Cosi cho 2 số dương và
Dấu bằng xảy ra khi:
<=> (do )
<=>
Vậy GTNN của P là đạt được khi x =
Lời giải
Gọi số sản phẩm cần làm theo dự định trong một ngày là x (sản phẩm/ ngày) ( x > 5)
Thời gian dự định làm là y (ngày) (y > 4)
=> Số sản phẩm cần làm là xy ( sản phẩm)
Nếu mỗi ngày họ làm tăng thêm 5 sản phẩm so với dự định thì sẽ hoàn thành kế hoạch trước thời hạn 4 ngày nên ta có phương trình:
(x + 5)(y – 4) = xy ⇔ –4x + 5y = 20 (1)
Nếu mỗi ngày họ làm ít hơn 5 sản phẩm so với dự định thì sẽ hoàn thành kế hoạch châm hơn thời hạn 5 ngày nên ta có phương trình:
(x – 5)(y + 5) = xy ⇔ 5x – 5y = 25 (2)
Từ (1) và (2) ta có hệ phương trình:
Khi đó số sản phẩm cần làm là: x.y = 45.40 = 1800 (sản phẩm)
Vậy số sản phẩm cần làm là 1800 sản phẩm
Số ngày dự định làm là 40 ngày
Lời giải
1. 2x4 + x2 – 6 = 0
Đặt x2 = t ( t ≥ 0), phương trình trở thành:
2t2 + t – 6 = 0
Δ = 1 – 4.2.( –6) = 49
=> Phương trình có 2 nghiệm phân biệt
Do t ≥ 0 nên t = 3/2
Vậy phương trình đã cho có nghiệm
2.a, Với m = –1, (d): y = –x + 2
(P): y = x2
Bảng giá trị:
Đồ thị (P): y = x2 là 1 đường parabol nằm phía trên trục hoành, nhận trục Oy làm trục đối xứng và nhận điểm O (0;0) làm đỉnh
y = –x + 2
Bảng giá trị:
Phương trình hoành độ giao điểm của (P) và (d) là:
x2 = –x + 2 ⇔ x2 + x – 2 = 0
=> Phương trình có 2 nghiệm x = 1; x = –2
Khi đó tọa độ giao điểm của (P) và (d) là (1; 1) và (–2; 4)
b, Phương trình hoành độ giao điểm của (P) và (d) là:
x2 = mx + 2 ⇔ x2 – mx – 2 = 0
Δ = m2 – 4.( –2) = m2 + 8 > 0 ∀m
=> Phương trình luôn có 2 nghiệm phân biệt với mọi m
Theo hệ thức Vi-et ta có:
Theo bài ra: x1 – 2x2 = 5 ⇔ x1 = 2x2 + 5
=> (2x2 + 5) x2 = –2 ⇔ 2x22 + 5x2 + 2 = 0
Khi đó:
Vậy có 2 giá trị của m thỏa mãn điều kiện đề bài là m = –1 ; m = 7/2
Lời giải
a, Xét tứ giác HMBI có:
∠HMI = ∠HBI (2 góc nội tiếp chắn 2 cung bằng nhau )
Mà 2 góc này cùng nhìn cạnh HI
=> Tứ giác BMHI nội tiếp
b, Xét ΔMNI và ΔMKC có:
∠KMC là góc chung
∠MNI = ∠KCM (2 góc nội tiếp chắn 2 cung bằng nhau )
=> ΔMNI ∼ ΔMCK => = => MN.MK = MC.MI
c, Xét tứ giác NKIC có:
∠KNI = ∠KCI (2 góc nội tiếp chắn 2 cung bằng nhau )
Mà 2 góc này cùng nhìn cạnh KI
=> Tứ giác NKIC là tứ giác nội tiếp
=> ∠NKI + ∠NCI = (1)
Xét đường tròn (O) có
( 2 góc nội tiếp cùng chắn cung AM)
và (2 góc nội tiếp chắn 2 cung bằng nhau )
=> ∠ANK + ∠NAK = ∠ACM + ∠NCA = ∠NCI (2)
Xét tam giác AKN có: ∠ANK + ∠NAK + ∠NKA = (3)
Từ (1), (2), (3) => ∠NKI = ∠NKA
Xét tam giác IKN và tam giác AKN có:
∠NKI = ∠NKA
KN là cạnh chung
∠KNI = ∠KNA (2 góc nội tiếp chắn 2 cung bằng nhau)
=> ΔIKN = ΔAKN
=> IK=AK =>ΔAKI cân tại K
Tứ giác NKIC là tứ giác nội tiếp
=> (2 góc nội tiếp cùng chắn cung KN)
và (2 góc nội tiếp cùng chắn cung IC) (*)
Mặt khác ∠KCN = ∠ABN (2 góc nội tiếp cùng chắn cung AN của (O))
∠BAC = ∠BNC (2 góc nội tiếp cùng chắc cung BC của (O))
=>
=> Tứ giác AHIK là hình bình hành
Mà IK = AK
=> Tứ giác AHIK là hình thoi
Lời giải
2b ≥ ab + 4 ≥ 4 ( Theo BĐT Cosi)
Vậy GTLN của P là 4/33 khi