Đề thi môn Toán vào lớp 10 năm 2020 - 2021 có đáp án (Tự luận - Đề 15)
38 người thi tuần này 4.6 21.6 K lượt thi 5 câu hỏi
🔥 Đề thi HOT:
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
12 bài tập Một số bài toán thực tế liên quan đến bất đẳng thức có lời giải
Tổng hợp các bài toán thực tế ôn thi vào 10 Toán 9 có đáp án (Phần 2: Hình học)
12 bài tập Một số bài toán thực tế liên quan đến bất phương trình bậc nhất một ẩn có lời giải
Đề ôn thi vào 10 môn Toán có đáp án (Mới nhất)- Đề số 1
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
1.
=
2.
Lời giải
a, Giả sử điểm cố định mà (d3) luôn đi qua với mọi m là A(xo; yo)
yo = mxo + m + 2 đúng với mọi m
⇔m(xo + 1) + (2 – yo ) = 0 đúng với mọi m
Vậy điểm cố định mà (d3 ) luôn đi qua với mọi m là A (–1; 2)
b, Tọa độ giao điểm của (d1) và (d2) là nghiệm của hệ phương trình
Để 3 đường thẳng trên đồng quy thì (d3) phải đi qua giao điểm của (d1) và (d2)
⇔ 0 = 2m + m + 2
⇔ m = –2/3
Vậy với m = –2/3 thì 3 đường thẳng trên đồng quy
Lời giải
1.a, Khi m = 2 ta có phương trình:
Phương trình có dạng a + b + c = 0 nên phương trình có nghiệm x = 1 và x = –3
Vậy tập nghiệm của phương trình là S = {1; –3}
b, x2 + 2(m – 1)x – (m + 1) = 0
Δ' = (m – 1)2 – (m – 1) = (m – 1)(m – 2)
Để phương trình có 2 nghiệm phân biệt thì
Δ' > 0 ⇔(m – 1)(m – 2) > 0
(*)
Khi đó theo định lí Vi-et ta có:
Phương trình có một nghiệm nhỏ hơn 1 và một nghiệm lớn hơn 1
⇔ (x1 – 1)(x2 – 1)<0
⇔ x1x2 – (x1 + x2 ) + 1 < 0
⇔ –(m + 1) + 2(m + 1) + 1 < 0
⇔ m + 2 < 0
⇔ m < –2
Đối chiếu với điều kiện (*) thấy thỏa mãn
Vậy với m < –2 thì phương trình có 2 nghiệm trong đó một nghiệm nhỏ hơn 1 và một nghiệm lớn hơn 1
2. Gọi tử số của phân số đó là x
Mẫu số của phân số đó là y (y ≠ 0)
Nếu tử số của một phân số được tăng gấp đôi và mẫu số thêm 8 thì giá trị của phân số bằng 1/4
nên ta có phương trình
=> 8x = y + 8 (1)
Nếu tử số thêm 7 và mẫu số tăng gấp 3 thì giá trị phân số bằng 5/24 nên ta có phương trình
=> 24x + 168 = 15y (2)
Từ (1) và (2) ta có hệ phương trình
Vậy phân số cần tìm là 3/16
Lời giải
1.
a, Xét tứ giác BEDC có:
∠BEC = (CE là đường cao)
∠BDC = (BD là đường cao)
=> Hai đỉnh D và E cùng nhìn cạnh BC dưới 1 góc vuông
=> Tứ giác BEDC là tứ giác nội tiếp
b, Xét ΔAEC và ΔADB có:
∠BAC là góc chung
∠AEC = ∠BDA =
=> ΔAEC ∼ ΔADB (g.g)
=> =
=> AE.AB = AC.AD
c, Ta có:
∠FBA = (góc nội tiếp chắn nửa đường tròn)
=>FB⊥AB
Lại có: CH⊥AB (CH là đường cao)
=> CH // FB
Tương tự,( FCA) = (góc nội tiếp chắn nửa đường tròn)
=>FC⊥AC
BH là đường cao => BH ⊥AC
=> FC // BH
Xét tứ giác CFBH có:
CH // FB
FC // BH
=> Tứ giác CFBH là hình bình hành.
Mà I là trung điểm của BC
=> I cũng là trung điểm của FH
Hay F, I, H thẳng hàng
2. Diện tích xung quanh của hình trụ:
S = 2πRh = 2πR2 = 128π (do chiều cao bằng bán kính đáy)
=> R = 8 cm ; h = 8cm
Thể tích của hình trụ là
V = πR2 h = π.82.8 = 512π (cm3)
Lời giải
1. Ta có:
Dấu bằng xảy ra khi:
2. Từ giả thiết 0 < x < 1; 0 < y < 1 nên ta có:
Mà nên:
⇔2x + 2y – 1 = 3xy
= x + y + 1 – x – y = 1 (do x + y ≤ 1)
Vậy P = 1