Cho đường tròn tâm (O) với dây AB cố định không phải đường kính. Gọi C là điểm thuộc cung lớn AB sao cho tam giác ABC nhọn. M; N lần lượt là điểm chính giữa của cung nhỏ AB; AC. Gọi I là giao điểm của BN và CM. Dây MN cắt AB và AC lần lượt tại H và K
a, Chứng minh tứ giác BMHI nội tiếp
b, Chứng minh MK.MN = MI.MC
c, Chứng minh tứ giác AKI cân tại K và tứ giác AHIK là hình thoi
Câu hỏi trong đề: Bộ Đề thi vào 10 môn Toán có đáp án !!
Quảng cáo
Trả lời:
a, Xét tứ giác HMBI có:
∠HMI = ∠HBI (2 góc nội tiếp chắn 2 cung bằng nhau )
Mà 2 góc này cùng nhìn cạnh HI
=> Tứ giác BMHI nội tiếp
b, Xét ΔMNI và ΔMKC có:
∠KMC là góc chung
∠MNI = ∠KCM (2 góc nội tiếp chắn 2 cung bằng nhau )
=> ΔMNI ∼ ΔMCK => = => MN.MK = MC.MI
c, Xét tứ giác NKIC có:
∠KNI = ∠KCI (2 góc nội tiếp chắn 2 cung bằng nhau )
Mà 2 góc này cùng nhìn cạnh KI
=> Tứ giác NKIC là tứ giác nội tiếp
=> ∠NKI + ∠NCI = (1)
Xét đường tròn (O) có
( 2 góc nội tiếp cùng chắn cung AM)
và (2 góc nội tiếp chắn 2 cung bằng nhau )
=> ∠ANK + ∠NAK = ∠ACM + ∠NCA = ∠NCI (2)
Xét tam giác AKN có: ∠ANK + ∠NAK + ∠NKA = (3)
Từ (1), (2), (3) => ∠NKI = ∠NKA
Xét tam giác IKN và tam giác AKN có:
∠NKI = ∠NKA
KN là cạnh chung
∠KNI = ∠KNA (2 góc nội tiếp chắn 2 cung bằng nhau)
=> ΔIKN = ΔAKN
=> IK=AK =>ΔAKI cân tại K
Tứ giác NKIC là tứ giác nội tiếp
=> (2 góc nội tiếp cùng chắn cung KN)
và (2 góc nội tiếp cùng chắn cung IC) (*)
Mặt khác ∠KCN = ∠ABN (2 góc nội tiếp cùng chắn cung AN của (O))
∠BAC = ∠BNC (2 góc nội tiếp cùng chắc cung BC của (O))
=>
=> Tứ giác AHIK là hình bình hành
Mà IK = AK
=> Tứ giác AHIK là hình thoi
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
2b ≥ ab + 4 ≥ 4 ( Theo BĐT Cosi)
Vậy GTLN của P là 4/33 khi
Lời giải
1. 2x4 + x2 – 6 = 0
Đặt x2 = t ( t ≥ 0), phương trình trở thành:
2t2 + t – 6 = 0
Δ = 1 – 4.2.( –6) = 49
=> Phương trình có 2 nghiệm phân biệt
Do t ≥ 0 nên t = 3/2
Vậy phương trình đã cho có nghiệm
2.a, Với m = –1, (d): y = –x + 2
(P): y = x2
Bảng giá trị:
Đồ thị (P): y = x2 là 1 đường parabol nằm phía trên trục hoành, nhận trục Oy làm trục đối xứng và nhận điểm O (0;0) làm đỉnh
y = –x + 2
Bảng giá trị:
Phương trình hoành độ giao điểm của (P) và (d) là:
x2 = –x + 2 ⇔ x2 + x – 2 = 0
=> Phương trình có 2 nghiệm x = 1; x = –2
Khi đó tọa độ giao điểm của (P) và (d) là (1; 1) và (–2; 4)
b, Phương trình hoành độ giao điểm của (P) và (d) là:
x2 = mx + 2 ⇔ x2 – mx – 2 = 0
Δ = m2 – 4.( –2) = m2 + 8 > 0 ∀m
=> Phương trình luôn có 2 nghiệm phân biệt với mọi m
Theo hệ thức Vi-et ta có:
Theo bài ra: x1 – 2x2 = 5 ⇔ x1 = 2x2 + 5
=> (2x2 + 5) x2 = –2 ⇔ 2x22 + 5x2 + 2 = 0
Khi đó:
Vậy có 2 giá trị của m thỏa mãn điều kiện đề bài là m = –1 ; m = 7/2
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.