Câu hỏi:

13/07/2024 14,704

Chứng minh rằng nếu 2n+1 và 3n+1 (n thuộc N) đều là số chính phương thì n chia hết cho 40.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

2n + 1 là số chính phương lẻ nên chia cho 8 dư 1 => n chẵn => 3n+1 là số chính phương lẻ, số này chia cho 8 dư 1 nên 3n chia hết cho 8, do đó n chia hết cho 8 (1).

Cách 1. 3n + 1 tận cùng 1, 5, 9 => 3n tận cùng 0, 4, 8 => n tận cùng 0, 8, 6. Loại trường hợp n tận cùng 8 (vì khi đó 2n + 1 tận cùng 7, không là số chính phương), loại trường hợp n tận cùng 6 (vì khi đó 2n + 1 tận cùng 3, không là số chính phương). Vậy n tận cùng 0 (2).

Từ (1) và (2) suy ra n chia hết cho 40.

Cách 2. 2n + 1, 3n + 1 là các số chính phương lẻ nên tận cùng bằng 1, 5, 9 do đó chia cho 5 dư 1, 0, 4. Tổng của chúng là 5n + 2 nên mỗi số 2n + 1 và 3n + 1 đều chia cho 5 dư 1, do đó 2n và 3n đều chia hết cho 5, vậy n chia hết cho 5(3).

Từ (1) và (3) suy ra n chia hết cho 40.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Chứng minh rằng nếu n+1 và 2n+1 (n thuộc N) đều là số chính phương thì n chia hết cho 24

Xem đáp án » 13/07/2024 10,773

Câu 2:

Tìm số nguyên tố p để 4p+1 là số chính phương.

Xem đáp án » 13/07/2024 7,302

Câu 3:

Tìm số nguyên n sao cho: n3-2 chia hết cho n-2

Xem đáp án » 13/07/2024 6,007

Câu 4:

Chứng minh rằng với mọi số nguyên n: n2+7n+22 không chia hết cho 9

Xem đáp án » 13/07/2024 5,791

Câu 5:

Chứng minh rằng: Tích của ba số nguyên dương liên tiếp không là số chính phương

Xem đáp án » 13/07/2024 5,046

Câu 6:

Tìm số tự nhiên n để giá trị của biểu thức là số nguyên tố: 12n2-5n-25

Xem đáp án » 13/07/2024 4,671

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Sách cho 2k7 ôn luyện THPT-vs-DGNL