Câu hỏi:

13/07/2024 19,313

Chứng minh rằng nếu 2n+1 và 3n+1 (n thuộc N) đều là số chính phương thì n chia hết cho 40.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

2n + 1 là số chính phương lẻ nên chia cho 8 dư 1 => n chẵn => 3n+1 là số chính phương lẻ, số này chia cho 8 dư 1 nên 3n chia hết cho 8, do đó n chia hết cho 8 (1).

Cách 1. 3n + 1 tận cùng 1, 5, 9 => 3n tận cùng 0, 4, 8 => n tận cùng 0, 8, 6. Loại trường hợp n tận cùng 8 (vì khi đó 2n + 1 tận cùng 7, không là số chính phương), loại trường hợp n tận cùng 6 (vì khi đó 2n + 1 tận cùng 3, không là số chính phương). Vậy n tận cùng 0 (2).

Từ (1) và (2) suy ra n chia hết cho 40.

Cách 2. 2n + 1, 3n + 1 là các số chính phương lẻ nên tận cùng bằng 1, 5, 9 do đó chia cho 5 dư 1, 0, 4. Tổng của chúng là 5n + 2 nên mỗi số 2n + 1 và 3n + 1 đều chia cho 5 dư 1, do đó 2n và 3n đều chia hết cho 5, vậy n chia hết cho 5(3).

Từ (1) và (3) suy ra n chia hết cho 40.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Chứng minh rằng nếu n+1 và 2n+1 (n thuộc N) đều là số chính phương thì n chia hết cho 24

Xem đáp án » 13/07/2024 15,295

Câu 2:

Tìm số nguyên tố p để 4p+1 là số chính phương.

Xem đáp án » 13/07/2024 8,713

Câu 3:

Chứng minh rằng với mọi số nguyên n: n2+7n+22 không chia hết cho 9

Xem đáp án » 13/07/2024 7,069

Câu 4:

Tìm số nguyên n sao cho: n3-2 chia hết cho n-2

Xem đáp án » 13/07/2024 7,044

Câu 5:

Chứng minh rằng: Tích của ba số nguyên dương liên tiếp không là số chính phương

Xem đáp án » 13/07/2024 6,081

Câu 6:

Tìm số tự nhiên n để giá trị của biểu thức là số nguyên tố: 12n2-5n-25

Xem đáp án » 13/07/2024 5,260
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua