Câu hỏi:

12/07/2024 1,837

Cho ABC có hai đường cao BM, CN. Chứng minh nếu BM = CN thì  cân

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: BMAC; CNAB

=> BNC^=900; CMB^=900

Xét BNC và CMB có:

BNC^=CMB^=900 (cmt)

BC là cạnh chung

CN = BM  (gt)                              

=>  BNC = CMB (ch - cgv)

=> B^=C^ (2 góc tương ứng) => ABC cân tại A

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC (HBC). Chứng minh rằng HB = HC.

Xem đáp án » 12/07/2024 39,228

Câu 2:

Cho tam giác ABC. Các tia phân giác của góc B và C cắt nhau ở I. Kẻ IDAB, IEAC (DAB; EAC). Chứng minh rằng AD = AE.

Xem đáp án » 12/07/2024 8,046

Câu 3:

Cho góc xOy. Tia Oz là tia phân giác góc xOy. Lấy điểm A thuộc tia OzAO. Kẻ AB vuông góc với Ox, AC vuông góc với Oy (BOx, COy). Chứng minh OAB = OAC.

Xem đáp án » 12/07/2024 3,607

Câu 4:

Cho tam giác đều ABC. Kẻ AM, BN, CP lần lượt vuông góc với các cạnh BC, AC, AB (MBC, NAC, PAB). Chứng minh rằng: AM = BN = CP.

Xem đáp án » 12/07/2024 3,137

Câu 5:

Tam giác ABC vuông tại A. Từ K trên BC kẻ KHAC. Trên tia đối của tia HK lấy I sao cho HI = HK. Chứng minh: AB // HK

Xem đáp án » 12/07/2024 2,762

Câu 6:

Tam giác ABC vuông tại A. Từ K trên BC kẻ KHAC. Trên tia đối của tia HK lấy I sao cho HI = HK, AK = AI. Chứng minh: AIC = AKC

Xem đáp án » 12/07/2024 1,201
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua