Câu hỏi:
14/05/2021 660Cho hai hàm số y = f(x) và y = g(x) xác định trên R. Đặt S(x) = f(x) + g(x) và P(x) = f(x) g(x).
Xét các mệnh đề:
i) Nếu y = f(x) và y = g(x) là những hàm số chẵn thì y = S(x) và y = P(x) cũng là những hàm số chẵn
ii) Nếu y = f(x) và y = g(x) là những hàm số lẻ thì y = S(x) là hàm số lẻ và y = P(x) là hàm số chẵn
iii) Nếu y = f(x) là hàm số chẵn, y = g(x) là hàm số lẻ thì y = P(x) là hàm số lẻ
Số mệnh đề đúng là:
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Xét mệnh đề i):
y = f(x) và y = g(x) là những hàm số chẵn thì
f(x) = f(−x), g(x) = g(−x), ∀x ∈ R
Suy ra f(x) + g(x) = f(−x) + g(−x), ∀x ∈ R ⇒ S(x) = S(−x), ∀x ∈ R
f(x) g(x) = f(−x) g(−x), ∀x ∈ R ⇒ P(x) = P(−x), ∀x ∈ R
Do đó y = S(x) và y = P(x) cũng là những hàm số chẵn.
Vậy mệnh đề i) đúng.
Xét mệnh đề ii):
y = f(x) và y = g(x) là những hàm số lẻ thì
−f(x) = f(−x), −g(x) = g(−x), ∀x ∈ R
Suy ra − (f(x) + g(x)) = f(−x) + g(−x), ∀x ∈ R ⇒ −S(x) = S(−x), ∀x ∈ R
Do đó y = S(x) là hàm số lẻ.
Lại có f(x) g(x) = f(−x) g(−x), ∀x ∈ R ⇒ P(x) = P(−x), ∀x ∈ R nên
y = P(x) là hàm số chẵn.
Vậy mệnh đề ii) đúng.
Xét mệnh đề iii):
y = f(x) là hàm số chẵn, y = g(x) là hàm số lẻ thì f(x) = f(−x), −g(x) = g(−x), ∀x ∈ R
Suy ra −f(x) g(x) = f(−x) g(−x), ∀x ∈ R ⇒ −P(x) = P(−x), ∀x ∈ R
Nên y = P(x) là hàm số lẻ.
Vậy mệnh đề iii) đúng.
Vậy số mệnh đề đúng là 3.
Đáp án cần chọn là: C
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tìm phương trình đường thẳng d: y = ax + b. Biết đường thẳng d đi qua điểm I (1; 2) và tạo với hai tia Ox, Oy một tam giác có diện tích bằng 4.
Câu 2:
Tìm giá trị thực của tham số m để ba đường thẳng y = −5(x + 1), y = mx + 3 và y = 3x + m phân biệt và đồng qui
Câu 3:
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [−2017; 2017] để hàm số y = (m2 − 4)x + 2m đồng biến trên R.
Câu 5:
Cho đường thẳng (d): y = –2x + 3. Tìm m để đường thẳng d′: y = mx + 1 cắt d tại một điểm thuộc đường phân giác của góc phần tư thứ hai
Câu 6:
Biết rằng đồ thị hàm số y = ax + b đi qua điểm E (2; −1) và song song với đường thẳng ON với O là gốc tọa độ và N (1; 3). Tính giá trị biểu thức S = a2 + b2.
Câu 7:
Cho hai đường thẳng (d1): y = −3x + m + 2; (d2): y = 4x − 2m − 5. Gọi A (1; yA) thuộc (d1), B (2; yB) thuộc (d2). Tìm tất cả các giá trị của m để A và B nằm về hai phía của trục hoành
về câu hỏi!