Câu hỏi:

25/04/2021 2,354

Cho ABC nhọn nội tiếp đường tròn (O). Vẽ phân giác trong AD của góc A (D O). Lấy điểm E thuộc cung nhỏ AC. Nối BE cắt AD và AC lần lượt tại I và tại K, nối DE cắt AC tại J. Kết luận nào đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có BID^ là góc có đỉnh nằm trong đường tròn (O) chắn hai cung BD và AE nên

  

+) AJE^ là góc có góc có đỉnh nằm trong đường tròn (O) chắn cung CD và AE nên

  

Mà AD là phân giác của góc A nên BD=CD

Suy ra  BID^=AJE^

Đáp án cần chọn là: A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho (O; R) và dây AB bất kỳ. Gọi M là điểm chính giữa cung nhỏ AB; E, F là hai điểm bất kì trên dây AB. (ảnh 1)

Ta có CEF^ là góc có đỉnh bên trong đường tròn nên CEF^=12(sdAmC+BM)

MDC^=12sdMC (góc nội tiếp chắn cung MC)

Từ đó  

Cho (O; R) và dây AB bất kỳ. Gọi M là điểm chính giữa cung nhỏ AB; E, F là hai điểm bất kì trên dây AB. (ảnh 2)

Mà cung AnM = cung MB nên 

Cho (O; R) và dây AB bất kỳ. Gọi M là điểm chính giữa cung nhỏ AB; E, F là hai điểm bất kì trên dây AB. (ảnh 3)

 =  12.360o=180o

Đáp án cần chọn là: D

Lời giải

(1). 

(2).

(3).

(1) + (2) + (3) => 2(sđ BD + sđ AC)=5800

=> sđ DB + sđ AD=2900 => sđ AB=2900

Đáp án cần chọn là: C

 

 

 

Đáp án cần chọn là: C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP