Câu hỏi:

28/05/2021 3,322

Cho hình bình hành ABCD có tâm đối xứng là O, E là điểm bất kỳ trên đoạn OD. Gọi F là điểm đối xứng của C qua E. Xác định vị trí điểm E trên OD để hình thang ODFA là hình bình hành.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Để hình thang ODFA là hình bình hành thì ta cần OD = AF mà OE = 12AF (cmt) nên OE = 12OD

Hay E là trung điểm của OD

Đáp án cần chọn là: B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét ΔADE và ΔABC có:

+ AD = AB (vì D đối xứng với B qua A)

+ EAD^=BAC^ (đối đỉnh)

+ AE = AC (vì E đối xứng với C qua A)

Nên ΔADE = ΔABC (c – g – c), suy ra EDA^=ABC^ mà hai góc này ở vị trí so le trong nên ED // BC

Xét ΔADI và ΔABK có:

+ AD = AB (vì D đối xứng với B qua A)

EDA^=ABC^ (cmt)

+ DI = BK (gt)

Nên ΔADI = ΔABK (c – g – c) =>  IAD^=KAB^ mà B, A, D thẳng hàng

Nên K, A, I thẳng hàng

Lại có IA = AK (do ΔADI = ΔABK) nên điểm K đối xứng với I qua A.

Đáp án cần chọn là: A

Lời giải

Vì E, F, G, H theo thứ tự là điểm đối xứng với O qua M, N, P, Q nên M, N, P, Q lần lượt là trung điểm của các đoạn thẳng OE, OF, OH, OG.

Xét tam giác OEF có MN là đường trung bình nên MN // EF; EF = 2MN (*)

Xét tam giác OHG có QP là đường trung bình nên QP // HG; HG = 2QP (**)

Mà MN = QP (theo câu trước) nên từ (*) vfa (**) suy ra EF // HG; EF = HG

Tứ giác EFGH có EF // HG; EF = HG nên EFGH là hình bình hành (dhnb)

Đáp án cần chọn là: B

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP