Cho tứ diện ABCD. Gọi E, F lần lượt là trung điểm của các cạnh AC và BC. Trên mặt phẳng (BCD) lấy một điểm M tùy ý (điểm M có đánh dấu tròn như hình vẽ). Nêu đầy đủ các trường hợp (TH) để thiết diện tạo bởi mặt phẳng (MEF) với tứ diện ABCD là một tứ giác.
Quảng cáo
Cho tứ diện ABCD, G là trọng tâm tứ diện. Gọi G1 là giao điểm của AG và mặt phẳng (BCD), G2 là giao điểm của BG và mặt phẳng (ACD). Khẳng định nào sau đây là đúng?
Cho hai đường thẳng a và b chéo nhau. Có bao nhiêu mặt phẳng chứa a và song song với b?
Cho hình hộp ABCD.A'B'C'D'. Gọi M là điểm trên cạnh AC sao cho . Lấy N trên cạnh C'D sao cho . Với giá trị nào của x thì .
Cho hình hộp ABCD.A'B'C'D'. Trên các cạnh AA', BB', CC' lần lượt lấy ba điểm M, N, P sao cho . Biết mặt phẳng (MNP) cắt cạnh DD' tại Q. Tính tỉ số
về câu hỏi!