Câu hỏi:

22/08/2021 234

Giả sử z1, z2 là hai số phức thỏa mãn z123i=1 và z2+2+5i=2 và số phức z thỏa mãn z3i=z1+i. Tìm giá trị nhỏ nhất của biểu thức .

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Gọi M(z1), khi đó z123i=1M(C1) với (C1) là đường tròn tâm I1(2;3) và R1=1.

Gọi N(z2), khi đó z2+2+5i=2N(C2) với (C2) là đường tròn tâm I2(2;5) và R2=2.

Gọi A(z) và z=x+yi, khi đó: z3i=z1+i

(x3)2+(y1)2=(x1)2+(y+1)2x+y2=0.

Suy ra AΔ:x+y2=0. Ta có:

T=AM+AN=(AM+MI1)+(AN+NI2)3AI1+AI23I1I23=453.

Dấu “=” xảy ra khi A=I1I2Δ. Vậy Tmin=453.

Chú ý: Ở bài toán này do I1, I2 khác phía so với  nên dấu “=” xảy ra, nếu trường hợp cùng phía ta phải lấy thêm điểm đối xứng để chuyển về khác phía

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

Chu vi: C=2πrr=C2π=6π2π=3.

Ta có h=4l=r2+h2=5Sxq=πrl=15π

Lời giải

Đáp án B

Gọi M(x;y) là điểm biểu diễn số phức z=x+yi (x,y).

Khi đó (z+1)(z¯2i)=(x+1+yi)x(y+2)i=x2+y2+x+2y(2x+y+2)i là số thuần ảo.

Suy ra: x2+y2+x+2y=0x+122+(y+1)2=54.

Vậy tập hợp điểm biểu diễn số phức z là đường tròn có bán kính R=52S=πR2=5π4.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP