Câu hỏi:

24/08/2021 453

Giả sử z1,z2 là hai trong số các số phức z thỏa mãn z+iz¯+3i là số thuần ảo. Biết rằng z1z2=3, giá trị lớn nhất của z1+2z2 bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Gọi z=x+yix,y, khi đó:

z+iz¯+3i=x+y+1i.xy3i là số thuần ảo

phần thực: x2+y+1y3=0x2+y12=4*

Gọi Az1Bz2*z1z2=3AB=3

Và A, B thuộc đường tròn tâm I(0;1) và bán kính R = 2.

Xét điểm M thỏa mãn MA+2MB=02*

Khi đó: P=z1+2z2=OA+2OB=OM+MA+2OM+MB2*=3OM=3OM

Gọi H là trung điểm của AB, khi đó với (2*), suy ra: MH=BHBM=321=12IH=IB2HB2=22322=72IM=MH2+IH2=2

Suy ra M thuộc đường tròn tâm I(0;1), bán kính R=2.

Khi đó: Pmin=3OMmin=3OC=3OI+r=31+2=3+32

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án D

Ta có: log1218=log218log212=log22.32log222.3=1+2log232+log23=1+2a2+a

Lời giải

Đáp án B

Diện tích hình vuông là: S=42=16m2

Gọi S3 là phần diện tích còn lại (không tô đậm).

Gắn hệ tọa độ nhưu hình vẽ:

Do I(0;4) là đỉnh của parabol (P) nên có phương trình: y=ax2+4B2;0P0=4a+4a=1y=x2+4

Ta có B2;0,D2;4 phương trình DB:y=x+2

Xét phương trình:

x2+4=x+2x=1x=2M1;3. Khi đó

S1=12x2+4x+2dx=12x2+x+2dx=92m2S2=21x2+4dx+12x+2dx=376m2*S3=SS1+S2=163

Suy ra tổng tiền: T=92.200000+376.150000+163.100000=2368333,32,37 triệu đồng.

Chú ý: Ở bài toán này ta có thể sử dụng công thức giải nhanh: “Diện tích giới hạn bởi parabol (P) và trục hoành là: S1+S2=23IO.AB=23.4.4=323m2S2=323S1=32392=376m2

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP