Câu hỏi:

25/08/2021 383 Lưu

Cho hàm số y=f(x) liên tục trên đoạn 3;10, biết f3=f3=f8 và có bảng biến thiên như hình bên:

Có bao nhiêu giá trị của m để phương trình f(x)=f(m) có ba nghiệm thực phân biệt thuộc đoạn  [-3;10]?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Số nghiệm của phương trình f(x)=f(m) (*) chính là số giao điểm của đồ thị y=f(x) và đường thẳng y=f(m) có phương song song hoặc trùng với trục Ox.

Do đó dựa vào bẳng biến thiên của hàm số y=f(x), phương trình (*) có ba nghiệm thực phân biệt 3fm<5(2*)

Từ bảng biến thiên của hàm số y=f(x), ta có: 3fx<53x<11<x38x<10

Khi đó (2*) 3m<11<m38m<10mm3;2;1;0;2;3;8;9: có 8 giá trị m

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án A

Điều kiện: 4x2>00<x12<x<20<x10<x<2x1D0;2\1

Lời giải

Đáp án C

Ta có: 3sinx1=0sinx=13 (*)

Dựa vào đường  tròn lượng giác, suy ra trên khoảng 0;3π

Phương trình (*) có 4 nghiệm phân biệt

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP