Câu hỏi:

25/08/2021 305

Cho a là số thực và z là nghiệm của phương trình z22z+a22a+5=0. Biết a=a0 là giá trị để số phức z có môđun nhỏ nhất. Khi đó a0 gần giá trị nào nhất trong các giá trị sau?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Gọi z=x+yi với x,y. Khi đó phương trình có dạng:

x+yi22x+yi+a22a+5=0

x2y22x+a22a+5+2yx1i=0

x2y22x+a22a+5=0     *2yx1=0          2* . Từ (2*) 2*y=0x=1

+) Với y=0, khi đó (*) có dạng: 

x22x+a22a+5=0x12+a12+3=0 (vô nghiệm)

+) Với x=1, khi đó (*) có dạng: y2+a22a+4=0y2=a22a+4

Suy ra: z=x2+y2=1+a22a+4=a12+42

Vậy zmin=2 khi a=a0=1 gần 2 nhất (trong các phương án đưa ra)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án A

Điều kiện: 4x2>00<x12<x<20<x10<x<2x1D0;2\1

Lời giải

Đáp án C

Ta có: 3sinx1=0sinx=13 (*)

Dựa vào đường  tròn lượng giác, suy ra trên khoảng 0;3π

Phương trình (*) có 4 nghiệm phân biệt

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP