Câu hỏi:

25/08/2021 655

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, thể tích là V. Gọi M là trung điểm của cạnh SA, N là điểm nằm trên cạnh SB sao cho SN=2NB; mặt phẳng α di động qua các điểm M, N và cắt các cạnh SC, SD lần lượt tại hai điểm phân biệt K, Q. Tính giá trị lớn nhất của thể tích khối chóp S.MNKQ

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Gọi a=SKSC  0a1

Vì mặt phẳng α di động đi qua các điểm M, N và cắt các cạnh SC, SD lần lượt tại hai điểm phân biệt K, Q nên ta có đẳng thức SASM+SCSK=SBSN+SDSQ2+1a=32+SDSQSQSD=2a2+a.

Ta có VS.MNKQVS.ABCD=12SMSA.SNSB.SKSC+SMSA.SKSC.SQSD=124a32a+2=2a31a+2

Xét hàm fa=2a31a+2 trên đoạn [0;1], ta được max0;  1fa=f1=13.

Ta chứng minh SASM+SCSP=SBSN+SDSQ

Ta có VS.ABCD=VSPNQ+VSQMP (*). Ta đặt V=VS.ABCDVSABC=VSABD=VSBCD=V2

VSMNQVSABD=2VSMNQV=SMSA.SNSB.SQSDVSNMQ=SMSA.SNSB.SQSD.V2

Tương tự VSPNQ=SPSC.SNSB.SQSD.V2;  VSMNP=SPSC.SNSB.SMSA.V2;VSPQM=SPSC.SMSA.SQSD.V2.

Từ (*) ta được: SMSA.SNSB.SQSD+SPSC.SNSB.SQSD=SPSC.SNSB.SMSA+SPSC.SMSA.SQSD

Chia cả 2 vế cho SPSC.SMSA.SNSB.SQSD ta được SASM+SCSP=SBSN+SDSQ

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án B

Ta có: Fx=sin22xdx=1cos4x2dx=121dx12cos4xdx

=12x18cos4xd4x=12x18sin4x+C

Câu 2

Lời giải

Đáp án A

Đồ thị hàm số có hình dạng của hàm bậc ba nên loại đáp án C.

Hàm số có hệ số a>0 nên chọn đáp án A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP