Câu hỏi:

27/08/2021 347

Cho hình chóp S.ABC có đáy AB là tam giác đều cạnh a,SAABC, góc giữa SC và mặt phẳng (ABC) bằng 300. Tính khoảng cách giữa hai đường thẳng SB và AC

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn C.

Do SAABC nên góc giữa SC và mặt phẳng (ABC) là góc SCA^. Suy ra SCA^=300.

Trong tam giác SCA vuông tại A có tanSCA^=SAACSA=AC.tanSCA^=a.tan300=a33.

Lấy điểm D sao cho ABCD là hình bình hành.

Khi đó dSB,AC=dAC,SBD=dA,SBD.

Ta có AB=BD=ADΔABD đều cạnh a.

Gọi M là trung điểm BD. Suy ra AMBD và AM=a32.

Trong ΔSAM kẻ AHSM với HSM.

Do BDAMBDSABDSAMBDAH

Suy ra AHSAMdA,SBD=AH.

Trong ΔSAM vuông tại A ta có:

1AH2=1AM2+1SA21AH2=43a2+93a21AH2=133a2AH=a313.

Vậy dSB,AC=a313=a3913.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn B.

Gọi T là phép thử ngẫu nhiên lấy ra 2 bi từ túi đựng 6 bi xanh và 4 bi đỏ.

Gọi biến cố A “cả hai viên bi đều màu đỏ”.

Số phần tử của không gian mẫu là nΩ=C102

Số phần tử của biến cố A là nA=C42

Xác suất của biến cố A là PA=nAnΩ=C42C102=215.

Lời giải

Chọn C.

Đặt t=logab, khi đó logab+6logba=5 trở thành

             t+61t=5t25t+6=0t=2t=3.

Với t=2 suy ra: logab=2b=a2.

Mặt khác 2a20202b2021b=a22a20202a220212a20201,412a202144.96

Suy ra ta có 43 số a2;3;4;...;44, tương ứng có 43 số bai2,i=2,44¯. Trường hợp này có 43 cặp.

Với t=3, suy ra: logab=3b=a3.

Mặt khác a,b2a20202b2021b=a32a20202a320212a20201.2623a2021312.64

Suy ra có 11 số a2;3;4;...;12, tương ứng có 11 số bai3,i=2,12¯. Trường hợp này có 11 cặp.

Vậy có 43+11=54 cặp

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Biết fxdx=ex+sinx+C. Mệnh đề nào sau đây đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay