Câu hỏi:

28/08/2021 183 Lưu

Cho hình nón đỉnh O có thiết diện đi qua trục là một tam giác vuông cân OAB,AB=a. Một mặt phẳng (P) đi qua O tạo với mặt phẳng đáy một góc 600 và cắt hình nón theo thiết diện là tam giác OMN. Diện tích tam giác OMN bằng 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn A.

Do tam giác vuông cân OAB nên ta có OB=a22=OM=ON và OI=AB2=a2.

Gọi I là tâm đường tròn đáy và H là giao điểm của MN và AB. Suy ra IHMN và H là trung điểm MN. Khi đó OHMN.

Vậy góc giữa (P) và mặt phẳng đáy là góc OHI^. Khi đó OHI^=600.

Trong tam giác ΔOIH vuông tại  ta có

           sinOHI^=OIOHOH=OIsinOHI^=a2sin600=a33.

Trong tam giác ΔOHM vuông tại H ta có MH=OM2OH2=2a243a29=a69.

Suy ra MN=2MH=a63.

Vậy diện tích ΔOMN là SΔOMN=12.OH.MN=12.a33.a63=a226 (đvdt).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D.

Ta có mặt tròn xoay sinh bởi l khi quay quanh trục Δ//l là mặt trụ

Lời giải

Chọn B.

Đặt log2x+2y1=tx+2y1=2tx=2t2y1.

Phương trình đã cho trở thành: 2yt=22t2y1y2.2y+y=2.2t+t

Xét hàm số fx=2.2x+x đồng biến trên y=t.

Suy ra phương trình log2x+2y1=yx+2y1=2yx=2y1.

2x202122y120211y1log22021

2ylog22021+1.

Do y nên y2;3;4;...;11 có 10 giá trị nguyên của y.

x=2y1 nên với mỗi số nguyên y2;3;4;...;11 xác định duy nhất một giá trị nguyên của x

Vậy có 10 cặp số nguyên (x;y) thỏa mãn bài toán

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP