Câu hỏi:

29/08/2021 19,892

Cho tứ diện ABCD có AB,AC,AD đôi một vuông góc với AB=6a, AC=9a, AD=3a. Gọi M,N,P lần lượt là trọng tâm các tam giác ABC, ACD, ADB. Thể tích của khối tứ diện AMNP bằng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

- Gọi M1,N1,P1 lần lượt là trung điểm của BC,CD,BD sử dụng công thức tỉ lệ thể tích Simpson, so sánh VAMNP và VAM1N1P1.

- Tiếp tục so sánh thể tích hai khối chóp có cùng chiều cao A.M1N1P1 và A.BCD, sử dụng tam giác đồng dạng để suy ra tỉ số diện tích hai đáy.

- Tính thể tích khối tứ diện ABCD là VABCD=16AB.AC.AD, từ đó tính được VAMNP

Gọi M1,N1,P1 lần lượt là trung điểm của BC,CD,BD ta có AMAM1=ANAN1=APAP1=23.

Khi đó VAMNPVAM1N1P1=AMAM1.ANAN1.APAP1=827.

Dễ thấy ΔM1N1P1 đồng dạng với tam giác DBC theo tỉ số k=12 nên SM1N1P1SDBC=14.

Mà hai khối chóp A.M1N1P1 và A.BCD có dùng chiều cao nên VA.M1N1P1VABCD=SM1N1P1SDBC=14.

Lại có VABCD=16AB.AC.AD=16.6a.9a.3a=27a3VA.M1N1P1=14VABCD=27a34.

Vậy VAMNP=827VAM1N1P1=827.27a34=2a3

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

- Sử dụng tổ hợp chọn 2 chữ số chẵn và 2 chữ số lẻ.

- Sử dụng hoán vị.

Chọn 2 chữ số chẵn khác nhau và khác 0 có C42 cách chọn.

Chọn 2 chữ số lẻ khác nhau có C52 cách chọn.

Hoán đổi 4 chữ số đã chọn có 4! cách.

Vậy có tất cả 4!C42.C52 số thỏa mãn

Câu 2

Cho hàm số fx=ln2020-lnx+1x. Tính S=f'1+f'2+...+f'2020

Lời giải

Đáp án D

- Sử dụng công thức lnab=lna-lnb

- Sử dụng công thức tính đạo hàm lnu'=u'u

- Thay lần lượt x=1;2;...;2020 rút gọn và tính S.

Ta có:

fx=ln2020-lnx+1x=ln2020-lnx+1+lnx

f'x=1x-1x+1

Khi đó ta có

S=f'1+f'2+...+f'2020S=11-12+12-13+...+12020-12021S=1-12021=20202021

Câu 3

Nghiệm của phương trình 32x-1=27 là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Tập xác định D của hàm số y=2020sinx là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay