Câu hỏi:

23/10/2021 1,129 Lưu

Phương trình log2cotxtanx=1+cos2xsin2x với x0;π4 có bao nhiêu nghiệm?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Do x0;π4 nên cotx>10<tanx<1cotxtanx>0.

cotxtanx=cosxsinxsinxcotx=2cos2xsin2x nên phương trình đã cho tương đương

log22cos2xsin2x=1+cos2xsin2x 

log2cos2xlog2sin2x=cos2xsin2x (do 0<sin2x,cos2x<1,x0;π4)

log2cos2xcos2x=log2sin2xsin2x

Xét hàm số ft=log2tt với t0;1.

Ta có f't=1tln21>0,t0;1 (vì 0<t<10<tln2<ln2<lne=1)

1tln2>11tln21>0

Suy ra hàm số f(t) đồng biến trên khoảng (0;1).

Suy ra fcos2x=fsin2xcos2x=sin2xtan2x=1x=π8.

Vậy phương trình đã cho có nghiệm duy nhất là x=π8.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

Phương trình f2x+m2fx+m3=0.

fx+1fx+m3=0fx=1       1fx=3m   2.

Từ đồ thị hàm số y=fx=ax2+bx+c ta vẽ được đồ thị hàm số y = f(|x|).

Cho hàm số y = f(x) = ax^2 +bx+c có đồ thị (C) như hình vẽ. Có bao (ảnh 2)

Từ đồ thị hàm số, suy ra phương trình (1) có 2 nghiệm.

Để phương trình f2x+m2fx+m3=0 có 6 nghiệm phân biệt thì phương trình (2) có 4 nghiệm phân biệt khi đó 1<3m<30<m<4

Do m nên có 3 giá trị m thỏa mãn.

Lời giải

Đáp án D

Người ta cần làm một hộp theo dạng một khối lăng trụ đều không nắp (ảnh 1)

Giả sử mỗi góc ta cắt đi một hình vuông cạnh x(m).

Khi đó chiều cao của hộp là x(m) với 0<x<12 và cạnh đáy của hộp là (1−2x)(m).

Thể tích của hộp là V=x12x2m3.

Xét hàm số fx=x12x2.

Ta có:

f'x=18x+12x2,f'x=0x=16x=12x=160;12

Ta có bảng biến thiên f(x) như sau:

Người ta cần làm một hộp theo dạng một khối lăng trụ đều không nắp (ảnh 2)

Vậy thể tích cần tìm là: V=227m3.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP