Câu hỏi:

25/10/2021 301

Cho các phát biểu sau:

(1): Hàm số y = f(x) đạt cực đại tại x0 khi và chỉ khi đạo hàm đổi dấu từ dương sang âm qua x0.

(2): Hàm số y = f(x) đạt cực đại tại x0 khi và chỉ khi x0 là nghiệm của đạo hàm.

(3): Nếu f’(x0) = 0 và f”(x0) = 0 thì x0 không phải là cực trị của hàm số đã cho.

(4): Nếu f’(x0) = 0 và f”(x0) > 0 thì hàm số đạt cực đại tại x0.

(5): Nếu f’(x0) = 0 và f”(x0) > 0 thì hàm số đạt cực tiểu tại x0.

Số phát biểu đúng là:

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số y=fx=ax2+bx+c có đồ thị (C) như hình vẽ. Có bao nhiêu giá trị nguyên của tham số m để phương trình f2x+m2fx+m3=0 có 6 nghiệm phân biệt?

Cho hàm số y = f(x) = ax^2 +bx+c có đồ thị (C) như hình vẽ. Có bao (ảnh 1)

Xem đáp án » 25/10/2021 21,237

Câu 2:

Hàm số y=log73x+1 có tập xác định là:

Xem đáp án » 23/10/2021 7,843

Câu 3:

Cho log1215=a. Khẳng định nào sau đây đúng?

Xem đáp án » 25/10/2021 6,961

Câu 4:

Người ta cần làm một hộp theo dạng một khối lăng trụ đều không nắp với thể tích lớn nhất từ một miếng tôn hình vuông có cạnh là 1 mét. Thể tích của hộp cần làm là:

Xem đáp án » 25/10/2021 6,113

Câu 5:

Cho a là số thực dương a≠1. Biết bất phương trình 2logaxx1 có nghiệm đúng với mọi x > 0. Mệnh đề nào sau đây đúng?

Xem đáp án » 25/10/2021 4,229

Câu 6:

Trong không gian Oxyz, cho ba điểm A(1;2;1), B(3;−1;1) và C(−1;−1;1). Gọi (S1) là mặt cầu có tâm A, bán kính bằng 2; (S2) và (S3) là hai mặt cầu có tâm lần lượt là B, C và bán kính bằng 1. Hỏi có bao nhiêu mặt phẳng tiếp xúc với cả ba mặt cầu (S1), (S2), (S3)?

Xem đáp án » 25/10/2021 3,763

Câu 7:

Từ các chữ số 1, 2, 3, 4, 5, 6, 7, 8 lập các số tự nhiên có tám chữ số đôi một khác nhau. Lấy ngẫu nhiên một số vừa lập. Xác suất để lấy được số chia hết cho 1111 là:

Xem đáp án » 25/10/2021 2,591

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store