Câu hỏi:
12/07/2024 410Với các số thực x, y thỏa mãn x + y = 1. Tìm giá trị nhỏ nhất của biểu thức
A = x3+ y3+ 2xy.
Câu hỏi trong đề: Đề thi Giữa kì 1 Toán 8 có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Ta có: x2+ 2xy + y2 = (x + y)2= 12= 1 (1)
A = x3+ y3+ 2xy
= (x + y)(x2– xy + y2) + 2xy
= x2– xy + y2+ 2xy
= x2+ xy + y2
Suy ra : 2A = 2x2+ 2xy + 2y2= (x + y)2+ x2+ y2= 1 + x2+ y2
Lại có: (x – y)2≥ 0
⇒ x2– 2xy + y2≥ 0 (2)
Từ (1) và (2)
⇒ (x2+ 2xy + y2) + (x2– 2xy + y2) ≥ 1
⇒ 2(x2+ y2) ≥ 1
\[ \Rightarrow {x^2} + {y^2} \ge \frac{1}{2}\]
\[ \Rightarrow {x^2} + {y^2} + 1 \ge \frac{3}{2}\]
\[ \Rightarrow 2A \ge \frac{3}{2}\]
\[ \Rightarrow A \ge \frac{3}{4}\]
Dấu “=” xảy ra \[ \Leftrightarrow x = y = \frac{1}{2}\]
Vậy với \[x = y = \frac{1}{2}\] thì giá trị nhỏ nhất của \[A \ge \frac{3}{4}\].
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a2+ b2+ c2= ab + bc + ca
⇔ 2(a² + b² + c²) = 2ab+ 2bc + 2ca
⇔ 2a² + 2b² + 2c² = 2ab + 2bc + 2ca
⇔ (a² – 2ab + b²) + (b² – 2bc + c²) + (a² – 2ac + c²) =0
⇔ (a – b)² + (b – c)² + (a – c)² = 0
Vì (a – b)² ≥ 0 với ∀ a, b
Vì (b – c)² ≥ 0 với ∀ c, b
Vì (a – c)² ≥ 0 với ∀ a, c
⇒ (a – b)² + (b – c)² + (a – c)² ≥ 0
Để (a – b)² + (b – c)² + (a – c)² = 0
\( \Rightarrow \left[ \begin{array}{l}a - b = 0\\b - c = 0\\c - a = 0\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}a = b\\b = c\\c = a\end{array} \right.\)
⇔ a = b = c (đpcm).
Lời giải
Hướng dẫn giải
1) A = x2– 5x + 4
= x2– 4x – x + 4
= x(x – 4) – (x – 4)
= (x – 4)(x – 1)
2) B = 9x2+ 4y2– 12xy – 4
= ((3x2) – 2 . 3x . (2y)2) – 4
= (3x – 2y)2– 4
= (3x – 2y – 2)(3x – 2y + 2).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.