Câu hỏi:

22/04/2022 1,876

Tổng tất cả các giá trị của tham số m để phương trình 3x22x+12xm=logx22x+32xm+2 có đúng ba nghiệm phân biệt là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn A.

Phương trình tương đương 3x22x+32xm+2=ln2xm+2lnx22x+3.

3x22x+3.lnx22x+3=32xm+2.ln2xm+2*.

Xét hàm đặc trưng ft=3t.lnt,t2 là hàm số đồng biến nên từ phương trình (*) suy ra

x22x+3=2xm+2gx=x22x2xm+1=0.

gx=x24x+2m+2 khi xmx22m+1          khi xmg'x=2x4 khi xm2x       khi xm.

Và g'x=0x=2 khi xmx=0 khi xm

Xét các trường hợp sau:

Trường hợp 1: m0 ta có bảng biến thiên của gx như sau:

Tổng tất cả các giá trị của tham số m để phương trình (ảnh 1) 

Phương trình chỉ có tối đa 2 nghiệm nên không có m thỏa mãn.

Trường hợp 2: m2 tương tự.

Trường hợp 3: 0<m<2, bảng biến thiên gx như sau:

Tổng tất cả các giá trị của tham số m để phương trình (ảnh 2)

Phương trình có 3 nghiệm khi m12=02m+1=0>2m32m+1<0=2m3m=1m=12m=32.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn C.

Cho hình chóp S.ABCD có SA vuông góc với (ABCD), đáy ABCD là hình chữ nhật. Biết AD = 2a, SA = a. (ảnh 1)

Gọi H là hình chiếu của A lên SD, ta chứng minh được AHSCD.

1AH2=1SA2+1AD2AH=2a5.

Lời giải

Chọn D.

Đường thẳng đi qua A và vuông góc với mặt phẳng (BCD) nhận vectơ pháp tuyến của (BCD) là vectơ chỉ phương.

Ta có BC=2;0;1,BD=0;1;2.

ud=n=BC,BD=1;4;2.

Khi đó ta loại phương án A và B

Thay điểm A(1;0;2) vào phương trình ở phương án D ta có 1=2+t0=4+4t2=4+2tt=1t=1t=1.

Suy ra đường thẳng có phương trình tham số ở phương án C đi qua điểm A nên D là phương án đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP