Câu hỏi:
24/04/2022 485Cho lăng trụ ABC.A'B'C' có đáy ABC là tam giác đều cạnh a. Hình chiếu của A' lên mặt phẳng (ABC) trùng với trung điểm BC. Tính khoảng cách d giữa hai đường thẳng và AA' biết góc giữa hai mặt phẳng và \(\left( {A'B'C'} \right)\) bằng
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Gọi M,N lần lượt là trung điểm của
Gọi N,E lần lượt là trung điểm của AB, BN.
Góc giữa hai mặt phẳng và bằng góc giữa hai mặt phẳng và
Vì và nên
Mặt khác
Từ (1) và (2) ta có \(AB \bot \left( {A'EM} \right) \Rightarrow \widehat {\left( {\left( {ABB'A'} \right);\left( {ABC} \right)} \right)} = \widehat {A'EM} = {60^0}.\)
Trong tam giác vuông A'EM có
Có
Từ (3) và (4) suy ra
Trong mặt phẳng từ M kẻ chính là đoạn vuông góc chung giữa AA' và B'C'
Trong mặt phẳng \(\left( {AMM'A'} \right)\) từ M kẻ \(MI \bot AA' \Rightarrow MI = M'K.\)
Trong tam giác A'MA vuông tại M có
Vậy
Đáp án A
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Gọi M,m thứ tự là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = \frac{{{x^2} + 3}}{{x - 1}}\) trên đoạn [-2;0] Tính P=M+m.
Câu 2:
Cho và và y là hai số dương. Tìm mệnh đề đúng trong các mệnh đề sau:
Câu 3:
Cho hàm số y=f(x) có đồ thị như hình vẽ
Hàm số \(f\left( {\sin x} \right)\) nghịch biến trên các khoảng nào sau đây.
Câu 4:
Cho hàm số y=f(x) là hàm số liên tục trên \(\mathbb{R}\) và có bảng biến thiên như hình vẽ dưới đây.
Khẳng định nào sau đây là khẳng định đúng?
Câu 5:
Cho hàm số y=f(x) có đạo hàm tại điểm Trong các mệnh đề sau, mệnh đề nào đúng?
Câu 6:
Cho hàm số y=f(x) xác định trên \(\mathbb{R}\backslash \left\{ { - 1} \right\}\) có bảng biến thiên
Chọn khẳng định đúng
Câu 7:
Tìm tất cả các tham số m để đồ thị hàm số \(y = \frac{{\sqrt {x - 1} + 2}}{{\sqrt {{x^2} - 4x + m} }}\) có hai đường tiệm cận đứng.
về câu hỏi!