Câu hỏi:

24/04/2022 3,547 Lưu

Cho lăng trụ ABC.A'B'C' có đáy ABC là tam giác đều cạnh a. Hình chiếu của A' lên mặt phẳng (ABC) trùng với trung điểm BC. Tính khoảng cách d giữa hai đường thẳng B'C' và AA' biết góc giữa hai mặt phẳng (ABB'A') và \(\left( {A'B'C'} \right)\) bằng 600.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Hướng dẫn gải:

Cho lăng trụ có đáy là tam giác đều cạnh Hình chiếu của lên mặt phẳng trùng với trung điểm Tính khoảng cách giữa hai đường thẳng và biết góc giữa hai mặt phẳng và \(\left( {A'B'C'} \right)\)  (ảnh 12)Cho lăng trụ có đáy là tam giác đều cạnh Hình chiếu của lên mặt phẳng trùng với trung điểm Tính khoảng cách giữa hai đường thẳng và biết góc giữa hai mặt phẳng và \(\left( {A'B'C'} \right)\)  (ảnh 13)

Gọi M,N lần lượt là trung điểm của BC,B'C'.

Gọi N,E lần lượt là trung điểm của AB, BN.

Góc giữa hai mặt phẳng (ABB'A')(A'B'C') bằng góc giữa hai mặt phẳng (ABB'A') và (ABC).

CNABME//CN nên MEAB(1)

Mặt khác A'M(ABC)A'MAB(2)

Từ (1) và (2) ta có \(AB \bot \left( {A'EM} \right) \Rightarrow \widehat {\left( {\left( {ABB'A'} \right);\left( {ABC} \right)} \right)} = \widehat {A'EM} = {60^0}.\)

CN=AM=a32;ME=12CN=a34.

Trong tam giác vuông A'EM có A'M=ME.tan600=3a4.

Có A'M'B'C'(3)

A'M(ABC)A'M(A'B'C')A'MB'C'(4)

Từ (3) và (4) suy ra B'C'(AMM'A').

Trong mặt phẳng (AMM'A') từ M kẻ M'KAA'M'K chính là đoạn vuông góc chung giữa AA' và B'C'

Trong mặt phẳng \(\left( {AMM'A'} \right)\) từ M kẻ \(MI \bot AA' \Rightarrow MI = M'K.\)

Trong tam giác A'MA vuông tại M có 1MI2=1AM2+1MA'2=289a2MI=3a714.

Vậy d=3a714.

Đáp án A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D.

Ta có y'=x22x3(x1)2 suy ra y'=0x22x3=0[x=1x=3.

Xét trên [-2;0] ta có f(2)=73,f(1)=2 và \(f\left( 0 \right) = - 3.\)

Vậy M=max[2;0]f(x)=2 m=min[2;0]f(x)=3, do đó P=M+m=5.

Lời giải

Hướng dẫn gải:

Dựa vào đồ thị hàm số y=f(x) ta có:

f'(x)=00<x<12;f'(x)>0[x>12x<0

Đặt g(x)=f(sinx)g'(x)=cosx.f'(sinx). Ta chỉ xét trên khoảng (0;π).

\(g'\left( x \right) = 0 \Leftrightarrow \cos x.f'\left( {\sin x} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}\cos x = 0\\f'\left( {\sin x} \right) = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\cos x = 0\\\sin x = 0\\\sin x = \frac{1}{2}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{2}\\x = \frac{\pi }{6}\\x = \frac{{5\pi }}{6}\end{array} \right.\)

Bảng biến thiên:

Cho hàm số có đồ thị như hình vẽHàm số \(f\left( {\sin x} \right)\) nghịch biến trên các khoảng nào sau đây.Hướng dẫn gải: (ảnh 7)
Dựa vào bảng biến thiên suy ra hàm số g(x)=f(sinx) đồng biến trên các khoảng (π6;π2) và (5π6;π).
Đáp án C

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP