Câu hỏi:

24/04/2022 5,356

Cho hàm số y=f(x) có đồ thị như hình vẽ

Cho hàm số có đồ thị như hình vẽHàm số \(f\left( {\sin x} \right)\) nghịch biến trên các khoảng nào sau đây.Hướng dẫn gải: (ảnh 2)

Hàm số \(f\left( {\sin x} \right)\) nghịch biến trên các khoảng nào sau đây.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Hướng dẫn gải:

Dựa vào đồ thị hàm số y=f(x) ta có:

f'(x)=00<x<12;f'(x)>0[x>12x<0

Đặt g(x)=f(sinx)g'(x)=cosx.f'(sinx). Ta chỉ xét trên khoảng (0;π).

\(g'\left( x \right) = 0 \Leftrightarrow \cos x.f'\left( {\sin x} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}\cos x = 0\\f'\left( {\sin x} \right) = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\cos x = 0\\\sin x = 0\\\sin x = \frac{1}{2}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{2}\\x = \frac{\pi }{6}\\x = \frac{{5\pi }}{6}\end{array} \right.\)

Bảng biến thiên:

Cho hàm số có đồ thị như hình vẽHàm số \(f\left( {\sin x} \right)\) nghịch biến trên các khoảng nào sau đây.Hướng dẫn gải: (ảnh 7)
Dựa vào bảng biến thiên suy ra hàm số g(x)=f(sinx) đồng biến trên các khoảng (π6;π2) và (5π6;π).
Đáp án C

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D.

Ta có y'=x22x3(x1)2 suy ra y'=0x22x3=0[x=1x=3.

Xét trên [-2;0] ta có f(2)=73,f(1)=2 và \(f\left( 0 \right) = - 3.\)

Vậy M=max[2;0]f(x)=2 m=min[2;0]f(x)=3, do đó P=M+m=5.

Câu 2

Cho a;b>0a;b1,x và y là hai số dương. Tìm mệnh đề đúng trong các mệnh đề sau:

Lời giải

Theo tính chất của lôgarit thì mệnh đề đúng là logbx=logba.logax.

Đáp án D

Câu 3

Cho hàm số y=f(x) xác định trên \(\mathbb{R}\backslash \left\{ { - 1} \right\}\) có bảng biến thiên

Cho hàm số xác định trên \(\mathbb{R}\backslash \left\{ { - 1} \right\}\) có bảng biến thiên3                     0           +1                           Chọn khẳng định đúngB. Đồ thị hàm số (ảnh 1)

Chọn khẳng định đúng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho hàm số f(a)=a13(a3a43)a18(a38a18) với a>0,a1. Tính giá trị M=f(20212020).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay