Câu hỏi:

02/04/2022 1,788 Lưu

Có bao nhiêu số nguyên x  sao cho tồn tại số thực y thỏa mãn log3x+y=log4x2+y2 ?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Điều kiện x+y>0;x2+y2>0.

Đặt t=log3x+y=log4x2+y2 . Ta có x+y=3tx2+y2=4t1

Vì x+y22x2+y23t22.4ttlog942

Thế thì x2+y2=4t4log9423,27 , vì x  nguyên vậy nên x20;1 .

+ Với x=0 , ta có hệ y=3ty2=4tt=0y=1

+ Với x=1 , ta có hệ y=3t1y2=4t1.  Hệ này có nghiệm t=0y=0.

+ Với x=1 , ta có hệ y=3t+1y2=4t1.  

Ta có phương trình 3t+12=4t19t+2.3t4t+2=0*

Đặt ft=9t+2.3t4t+2 , ta có

Với t09t4tft>0

Với t<04t<2ft>0

Vậy phương trình (*)  vô nghiệm

Kết luận: Vậy x0;1

Chọn đáp án B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

02fx5gx+xdx=02fxdx502gxdx+02xdx

=3+5+2=10

Chọn đáp án D

Lời giải

Ta có: 27fxdx=25fxdx+57fxdx=3+9=12
Chọn đáp án C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP