Câu hỏi:

25/04/2022 228 Lưu

Đồ thị hàm số \(y = \frac{{\sqrt {1 - {x^2}} }}{{{x^2} + 2x}}\) có tất cả bao nhiêu tiệm cận đứng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hàm số xác định \[ < = >\left\{ \begin{array}{l}1 - {x^2} \ge 0\\{x^2} + 2x \ne 0\end{array} \right. < = >x \in {\rm{[}} - 1;1]\backslash {\rm{\{ }}0\} \]</></>

\[\mathop {\lim }\limits_{x \to {0^ + }} y = + \infty \] =>đường thẳng x=0 là tiệm cận đứng.

\[\mathop {\lim }\limits_{x \to - {1^ + }} y = 0;\mathop {\lim }\limits_{x \to - {1^ - }} y = 0\]

Vậy hàm số đã cho có 1 tiệm cận đứng.

Đáp án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: \(y' = \frac{{1 - m}}{{{{\left( {x + 1} \right)}^2}}}\)

TH1: \(m = 1 \Rightarrow y = 1\) loại

TH2: \(m >1\)

\(\mathop {\min }\limits_{\left[ {1;2} \right]} y + \mathop {\max }\limits_{\left[ {1;2} \right]} y = \frac{{1 + m}}{2} + \frac{{2 + m}}{3} = \frac{{16}}{3} \Leftrightarrow m = 5\) (thỏa mãn)

TH3: \(m < 1\)

\(\mathop {\min }\limits_{\left[ {1;2} \right]} y + \mathop {\max }\limits_{\left[ {1;2} \right]} y = \frac{{2 + m}}{3} + \frac{{1 + m}}{2} = \frac{{16}}{3} \Leftrightarrow m = 5\) (loại)

Vậy \(m = 5\) thỏa mãn.

Đáp án A.

Lời giải

\(y' = \frac{1}{2} - \frac{1}{{2\sqrt {x + 2} }} = \frac{{\sqrt {x + 2} - 1}}{{2\sqrt {x + 2} }}\)

\(y' = 0 \Leftrightarrow \sqrt {x + 1} = 1 \Leftrightarrow x = - 1\)

\(f\left( { - 1} \right) = - \frac{3}{2};f\left( {34} \right) = 11.\)

\(m = - \frac{3}{2};M = 11.S = 3\left( { - \frac{3}{2}} \right) + 11 = \frac{{ - 9}}{2} + 11 = \frac{{13}}{2}.\)

Đáp án A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP