Câu hỏi:
25/04/2022 161Đồ thị hàm số \(y = \frac{{\sqrt {1 - {x^2}} }}{{{x^2} + 2x}}\) có tất cả bao nhiêu tiệm cận đứng?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hàm số xác định \[ < = >\left\{ \begin{array}{l}1 - {x^2} \ge 0\\{x^2} + 2x \ne 0\end{array} \right. < = >x \in {\rm{[}} - 1;1]\backslash {\rm{\{ }}0\} \]</></>
\[\mathop {\lim }\limits_{x \to {0^ + }} y = + \infty \] =>đường thẳng x=0 là tiệm cận đứng.
\[\mathop {\lim }\limits_{x \to - {1^ + }} y = 0;\mathop {\lim }\limits_{x \to - {1^ - }} y = 0\]
Vậy hàm số đã cho có 1 tiệm cận đứng.
Đáp án A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số bậc bốn \(y = f\left( x \right)\) có đồ thị hình vẽ bên.
Số điểm cực trị của hàm số \(g\left( x \right) = f\left( {{x^3} - 3x} \right)\) là
Câu 2:
Cho hàm số \(y = \frac{{x + m}}{{x + 1}}\) (\(m\) là tham số thực) thỏa mãn \(\mathop {\min }\limits_{\left[ {1;2} \right]} y + \mathop {\max }\limits_{\left[ {1;2} \right]} y = \frac{{16}}{3}.\) Mệnh đề nào dưới đây đúng?
Câu 3:
Gọi \(m\) và \(M\) lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số \(y = \frac{1}{2}x - \sqrt {x + 2} \) trên đoạn \(\left[ { - 1;34} \right].\) Tổng \(S = 3m + M\) bằng
Câu 4:
Cho hàm số bậc ba \(y = f\left( x \right)\) có đồ thị như hình vẽ.
Hàm số \(y = f\left( {\left| {x + 1} \right| - 1} \right)\) có bao nhiêu điểm cực trị?
Câu 5:
Cho hình chóp \(S.ABCD\) có \(SA = a,SA \bot \left( {ABCD} \right),\) đáy \(ABCD\) là hình vuông. Gọi \(M\) là trung điểm của \(AD,\) góc giữa \(\left( {SBM} \right)\) và mặt đáy bằng \({45^0}.\) Tính khoảng cách từ \(D\) đến mặt phẳng \(\left( {SBM} \right).\)
Câu 6:
Cho hàm số \(y = \frac{{x + 2}}{{x - 1}}.\) Tính \(y'\left( 3 \right).\)
Câu 7:
Với \(m\) là một tham số thực thì đồ thị hàm số \(y = {x^3} - 2{x^2} + x - 1\) và đường thẳng \(y = m\) có nhiều nhất bao nhiêu giao điểm?
về câu hỏi!