Câu hỏi:
25/04/2022 196Từ một hộp đựng 2019 thẻ đánh số thứ tự từ 1 đến 2019. Chọn ngẫu nhiên ra hai thẻ. Tính xác suất của biến cố A = “tổng số ghi trên hai thẻ nhỏ hơn 2002”.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Số phần tử của không gian mẫu là:
Để chọn được hai thẻ có tổng số nhỏ hơn 2002 ta xét các trường hợp sau:
TH 1: chọn số 1, khi đó có 1999 cách chọn số còn lại thuộc tập \(\left\{ {2;3;...;2000} \right\}.\)
TH 2: chọn số 2, khi đó có 1997 cách chọn số còn lại thuộc tập \(\left\{ {3;...;1999} \right\}.\)
…..
TH 1000: chọn số 1000, khi đó có 1 cách chọn số còn lại thuộc tập
Nên \(n\left( A \right) = 1999 + 1997 + ... + 1 = \frac{{\left( {1999 + 1} \right)1000}}{2} = {10^6},P\left( A \right) = \frac{{{{10}^6}}}{{C_{2019}^2}}.\)
Đáp án C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số bậc bốn \(y = f\left( x \right)\) có đồ thị hình vẽ bên.
Số điểm cực trị của hàm số \(g\left( x \right) = f\left( {{x^3} - 3x} \right)\) là
Câu 2:
Cho hàm số \(y = \frac{{x + m}}{{x + 1}}\) (\(m\) là tham số thực) thỏa mãn \(\mathop {\min }\limits_{\left[ {1;2} \right]} y + \mathop {\max }\limits_{\left[ {1;2} \right]} y = \frac{{16}}{3}.\) Mệnh đề nào dưới đây đúng?
Câu 3:
Gọi \(m\) và \(M\) lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số \(y = \frac{1}{2}x - \sqrt {x + 2} \) trên đoạn \(\left[ { - 1;34} \right].\) Tổng \(S = 3m + M\) bằng
Câu 4:
Cho hàm số bậc ba \(y = f\left( x \right)\) có đồ thị như hình vẽ.
Hàm số \(y = f\left( {\left| {x + 1} \right| - 1} \right)\) có bao nhiêu điểm cực trị?
Câu 5:
Cho hình chóp \(S.ABCD\) có \(SA = a,SA \bot \left( {ABCD} \right),\) đáy \(ABCD\) là hình vuông. Gọi \(M\) là trung điểm của \(AD,\) góc giữa \(\left( {SBM} \right)\) và mặt đáy bằng \({45^0}.\) Tính khoảng cách từ \(D\) đến mặt phẳng \(\left( {SBM} \right).\)
Câu 6:
Cho hàm số \(y = \frac{{x + 2}}{{x - 1}}.\) Tính \(y'\left( 3 \right).\)
Câu 7:
Với \(m\) là một tham số thực thì đồ thị hàm số \(y = {x^3} - 2{x^2} + x - 1\) và đường thẳng \(y = m\) có nhiều nhất bao nhiêu giao điểm?
về câu hỏi!