Câu hỏi:

25/04/2022 291 Lưu

Từ một hộp đựng 2019 thẻ đánh số thứ tự từ 1 đến 2019. Chọn ngẫu nhiên ra hai thẻ. Tính xác suất của biến cố A = “tổng số ghi trên hai thẻ nhỏ hơn 2002”.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Số phần tử của không gian mẫu là: n(Ω)=C20192.

Để chọn được hai thẻ có tổng số nhỏ hơn 2002 ta xét các trường hợp sau:

TH 1: chọn số 1, khi đó có 1999 cách chọn số còn lại thuộc tập \(\left\{ {2;3;...;2000} \right\}.\)

TH 2: chọn số 2, khi đó có 1997 cách chọn số còn lại thuộc tập \(\left\{ {3;...;1999} \right\}.\)

…..

TH 1000: chọn số 1000, khi đó có 1 cách chọn số còn lại thuộc tập {1001}.

Nên \(n\left( A \right) = 1999 + 1997 + ... + 1 = \frac{{\left( {1999 + 1} \right)1000}}{2} = {10^6},P\left( A \right) = \frac{{{{10}^6}}}{{C_{2019}^2}}.\)

Đáp án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: \(y' = \frac{{1 - m}}{{{{\left( {x + 1} \right)}^2}}}\)

TH1: \(m = 1 \Rightarrow y = 1\) loại

TH2: \(m >1\)

\(\mathop {\min }\limits_{\left[ {1;2} \right]} y + \mathop {\max }\limits_{\left[ {1;2} \right]} y = \frac{{1 + m}}{2} + \frac{{2 + m}}{3} = \frac{{16}}{3} \Leftrightarrow m = 5\) (thỏa mãn)

TH3: \(m < 1\)

\(\mathop {\min }\limits_{\left[ {1;2} \right]} y + \mathop {\max }\limits_{\left[ {1;2} \right]} y = \frac{{2 + m}}{3} + \frac{{1 + m}}{2} = \frac{{16}}{3} \Leftrightarrow m = 5\) (loại)

Vậy \(m = 5\) thỏa mãn.

Đáp án A.

Lời giải

\(y' = \frac{1}{2} - \frac{1}{{2\sqrt {x + 2} }} = \frac{{\sqrt {x + 2} - 1}}{{2\sqrt {x + 2} }}\)

\(y' = 0 \Leftrightarrow \sqrt {x + 1} = 1 \Leftrightarrow x = - 1\)

\(f\left( { - 1} \right) = - \frac{3}{2};f\left( {34} \right) = 11.\)

\(m = - \frac{3}{2};M = 11.S = 3\left( { - \frac{3}{2}} \right) + 11 = \frac{{ - 9}}{2} + 11 = \frac{{13}}{2}.\)

Đáp án A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP