Câu hỏi:
25/04/2022 351Có tất cả bao nhiêu số nguyên dương \(m\) để hàm số \(y = \frac{{\cos x + 1}}{{10\cos x + m}}\) đồng biến trên khoảng \(\left( {0;\frac{\pi }{2}} \right)\)?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
* Đặt \(t = \cos x\left( {0 < t < 1} \right) \Rightarrow y = \frac{{t + 1}}{{10t + m}} \Rightarrow y' = \frac{{m - 10}}{{\left( {10t + {m^2}} \right)}}t;\)
* Hàm số \(y = \frac{{\cos x + 1}}{{10\cos x + m}}\) đồng biến trên khoảng \(\left( {0;\frac{\pi }{2}} \right)\)
\( \Leftrightarrow y' = \frac{{m - 10}}{{{{\left( {10t + m} \right)}^2}}}t' >0,\forall x \in \left( {0;\frac{\pi }{2}} \right).\) Vì trên khoảng \(\left( {0;\frac{\pi }{2}} \right)\) hàm số \(t = \cos x\) nghịch biến nên \(t' < 0,\forall x \in \left( {0;\frac{\pi }{2}} \right)\)
* Từ đó suy ra:
\(\left\{ \begin{array}{l}m - 10 < 0\\ - \frac{m}{{10}} \notin \left( {0;1} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < 10\\\left[ \begin{array}{l}m \le - 10\\m \ge 0\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m \le - 10\\0 \le m < 10\end{array} \right..\)
\(m\) nguyên dương nên \(m \in \left\{ {1,2,...,9} \right\}.\)
Đáp án D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số bậc bốn \(y = f\left( x \right)\) có đồ thị hình vẽ bên.
Số điểm cực trị của hàm số \(g\left( x \right) = f\left( {{x^3} - 3x} \right)\) là
Câu 2:
Cho hàm số \(y = \frac{{x + m}}{{x + 1}}\) (\(m\) là tham số thực) thỏa mãn \(\mathop {\min }\limits_{\left[ {1;2} \right]} y + \mathop {\max }\limits_{\left[ {1;2} \right]} y = \frac{{16}}{3}.\) Mệnh đề nào dưới đây đúng?
Câu 3:
Gọi \(m\) và \(M\) lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số \(y = \frac{1}{2}x - \sqrt {x + 2} \) trên đoạn \(\left[ { - 1;34} \right].\) Tổng \(S = 3m + M\) bằng
Câu 4:
Cho hàm số bậc ba \(y = f\left( x \right)\) có đồ thị như hình vẽ.
Hàm số \(y = f\left( {\left| {x + 1} \right| - 1} \right)\) có bao nhiêu điểm cực trị?
Câu 5:
Cho hình chóp \(S.ABCD\) có \(SA = a,SA \bot \left( {ABCD} \right),\) đáy \(ABCD\) là hình vuông. Gọi \(M\) là trung điểm của \(AD,\) góc giữa \(\left( {SBM} \right)\) và mặt đáy bằng \({45^0}.\) Tính khoảng cách từ \(D\) đến mặt phẳng \(\left( {SBM} \right).\)
Câu 6:
Cho hàm số \(y = \frac{{x + 2}}{{x - 1}}.\) Tính \(y'\left( 3 \right).\)
Câu 7:
Với \(m\) là một tham số thực thì đồ thị hàm số \(y = {x^3} - 2{x^2} + x - 1\) và đường thẳng \(y = m\) có nhiều nhất bao nhiêu giao điểm?
về câu hỏi!