Câu hỏi:
25/04/2022 274Một công ty cần xây dựng một kho chứa hàng dạng hình hộp chữ nhật (bằng vật liệu gạch và xi măng) có thể tích \(2000{m^3},\) đáy là hình chữ nhật có chiều dài bằng hai lần chiều rộng. Người ta cần tính toán sao cho chi phí xây dựng là thấp nhất, biết giá xây dựng là \(750.000\) đ/m2. Khi đó chi phí thấp nhất gần với số nào dưới đây?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Gọi chiều rộng của đáy hình chữ nhật là \(x\left( m \right)\) thì chiều dài của đáy là \(2x\left( m \right)\) với \(x >0.\)
Chiều cao của kho chứa là \(h\left( m \right)\) với \(h >0.\)
Theo giả thiết, ta có \(x.2x.h = 2000 \Leftrightarrow h = \frac{{1000}}{{{x^2}}}.\)
Diện tích toàn phần của kho chứa là \(S = 2x.2x + 2.2x.h + 2.x.h = 4{x^2} + \frac{{6000}}{x}.\)
Để chi phí xây dựng thấp nhất thì diện tích toàn phần của kho chứa phải nhỏ nhất.
Ta có \(S' = 8x - \frac{{6000}}{{{x^2}}} = \frac{{8{x^3} - 6000}}{{{x^2}}}.\)
\(S' = 0 \Leftrightarrow 8{x^3} - 6000 = 0 \Leftrightarrow x = 5\sqrt[3]{6}.\)
Bảng biến thiên
Vậy \({S_{\min }} = S\left( {5\sqrt[3]{6}} \right) \Rightarrow \) chi phí thấp nhất là \(\left[ {4.{{\left( {5\sqrt[3]{6}} \right)}^2} + \frac{{6000}}{{5\sqrt[3]{6}}}} \right].750000 \approx 742933631.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số bậc bốn \(y = f\left( x \right)\) có đồ thị hình vẽ bên.
Số điểm cực trị của hàm số \(g\left( x \right) = f\left( {{x^3} - 3x} \right)\) là
Câu 2:
Cho hàm số \(y = \frac{{x + m}}{{x + 1}}\) (\(m\) là tham số thực) thỏa mãn \(\mathop {\min }\limits_{\left[ {1;2} \right]} y + \mathop {\max }\limits_{\left[ {1;2} \right]} y = \frac{{16}}{3}.\) Mệnh đề nào dưới đây đúng?
Câu 3:
Gọi \(m\) và \(M\) lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số \(y = \frac{1}{2}x - \sqrt {x + 2} \) trên đoạn \(\left[ { - 1;34} \right].\) Tổng \(S = 3m + M\) bằng
Câu 4:
Cho hàm số bậc ba \(y = f\left( x \right)\) có đồ thị như hình vẽ.
Hàm số \(y = f\left( {\left| {x + 1} \right| - 1} \right)\) có bao nhiêu điểm cực trị?
Câu 5:
Cho hình chóp \(S.ABCD\) có \(SA = a,SA \bot \left( {ABCD} \right),\) đáy \(ABCD\) là hình vuông. Gọi \(M\) là trung điểm của \(AD,\) góc giữa \(\left( {SBM} \right)\) và mặt đáy bằng \({45^0}.\) Tính khoảng cách từ \(D\) đến mặt phẳng \(\left( {SBM} \right).\)
Câu 6:
Cho hàm số \(y = \frac{{x + 2}}{{x - 1}}.\) Tính \(y'\left( 3 \right).\)
Câu 7:
Với \(m\) là một tham số thực thì đồ thị hàm số \(y = {x^3} - 2{x^2} + x - 1\) và đường thẳng \(y = m\) có nhiều nhất bao nhiêu giao điểm?
về câu hỏi!