Câu hỏi:
25/04/2022 490Một công ty cần xây dựng một kho chứa hàng dạng hình hộp chữ nhật (bằng vật liệu gạch và xi măng) có thể tích \(2000{m^3},\) đáy là hình chữ nhật có chiều dài bằng hai lần chiều rộng. Người ta cần tính toán sao cho chi phí xây dựng là thấp nhất, biết giá xây dựng là \(750.000\) đ/m2. Khi đó chi phí thấp nhất gần với số nào dưới đây?
Quảng cáo
Trả lời:
Gọi chiều rộng của đáy hình chữ nhật là \(x\left( m \right)\) thì chiều dài của đáy là \(2x\left( m \right)\) với \(x >0.\)
Chiều cao của kho chứa là \(h\left( m \right)\) với \(h >0.\)
Theo giả thiết, ta có \(x.2x.h = 2000 \Leftrightarrow h = \frac{{1000}}{{{x^2}}}.\)
Diện tích toàn phần của kho chứa là \(S = 2x.2x + 2.2x.h + 2.x.h = 4{x^2} + \frac{{6000}}{x}.\)
Để chi phí xây dựng thấp nhất thì diện tích toàn phần của kho chứa phải nhỏ nhất.
Ta có \(S' = 8x - \frac{{6000}}{{{x^2}}} = \frac{{8{x^3} - 6000}}{{{x^2}}}.\)
\(S' = 0 \Leftrightarrow 8{x^3} - 6000 = 0 \Leftrightarrow x = 5\sqrt[3]{6}.\)
Bảng biến thiên

Vậy \({S_{\min }} = S\left( {5\sqrt[3]{6}} \right) \Rightarrow \) chi phí thấp nhất là \(\left[ {4.{{\left( {5\sqrt[3]{6}} \right)}^2} + \frac{{6000}}{{5\sqrt[3]{6}}}} \right].750000 \approx 742933631.\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(g'\left( x \right) = \left( {3{x^2} - 3} \right)f'\left( {{x^3} - 3x} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = \pm 1\\f'\left( {{x^3} - 3x} \right) = 0\end{array} \right.\)
Dựa vào đồ thị ta có \(f'\left( {{x^3} - 3x} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}{x^3} - 3x = t\left( { - 2 >t} \right)\\{x^3} - 3x = u\left( { - 2 < u < 0} \right)\left( * \right)\\{x^3} - 3x = v\left( {0 < v < 2} \right)\end{array} \right.\)
Xét \(h\left( x \right) = {x^3} - 3x \Rightarrow h'\left( x \right) = 3{x^2} - 3 = 0 \Leftrightarrow x = \pm 1\) ta có bảng biến thiên sau:

Dựa vào bảng biến thiên ta được (*) có 7 nghiệm phân biệt khác \( \pm 1\) nên \(g'\left( x \right) = 0\) có 9 nghiệm đơn phân biệt. Vậy hàm số \(g\left( x \right) = f\left( {{x^3} - 3x} \right)\) có 9 cực trị.
Đáp án B.
Lời giải
\(y' = \frac{1}{2} - \frac{1}{{2\sqrt {x + 2} }} = \frac{{\sqrt {x + 2} - 1}}{{2\sqrt {x + 2} }}\)
\(y' = 0 \Leftrightarrow \sqrt {x + 1} = 1 \Leftrightarrow x = - 1\)
\(f\left( { - 1} \right) = - \frac{3}{2};f\left( {34} \right) = 11.\)
\(m = - \frac{3}{2};M = 11.S = 3\left( { - \frac{3}{2}} \right) + 11 = \frac{{ - 9}}{2} + 11 = \frac{{13}}{2}.\)
Đáp án A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.