Câu hỏi:

26/04/2022 3,266

Tìm tất cả các giá trị của tham số \(m\) sao cho đồ thị hàm số \(y = \frac{{\sqrt {x - 1} + 2021}}{{\sqrt {{x^2} - 2mx + m + 2} }}\) có đúng ba đường tiệm cận.

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \(\exists \mathop {\lim }\limits_{x \to - \infty } y\) và \(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {x - 1} + 2021}}{{\sqrt {{x^2} - 2mx + m + 2} }} = \mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {\frac{1}{x} - \frac{1}{{{x^2}}}} + \frac{{2021}}{x}}}{{\sqrt {1 - \frac{{2m}}{x} + \frac{{m + 2}}{{{x^2}}}} }} = 0.\)

Suy ra đồ thị hàm số có một tiệm cận ngang có phương trình \(y = 0.\)

Để đồ thị hàm số có đúng ba đường tiệm cận thì phương trình \({x^2} - 2mx + m + 2 = 0\) có đúng hai nghiệm phân biệt \({x_1} >{x_2} \ge 1\)

\( \Leftrightarrow \left\{ \begin{array}{l}\Delta ' = {m^2} - m - 2 >0\\\left( {{x_1} - 1} \right)\left( {{x_2} - 1} \right) \ge 0\\{x_1} - 1 + {x_2} - 1 >0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left( {m + 1} \right)\left( {m - 2} \right) >0\\{x_1}{x_2} - \left( {{x_1} + {x_2}} \right) + 1 \ge 0\\{x_1} + {x_2} >2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left( {m + 1} \right)\left( {m - 2} \right) >0\\m + 2 - 2m + 1 \ge 0\\2m >2\end{array} \right. \Leftrightarrow 2 < m \le 3.\)

Vậy các giá trị \(2 < m \le 3\) thỏa mãn yêu cầu bài toán.

Đáp án A

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(y = f\left( x \right).\) Hàm số \(y = f'\left( x \right)\) có đồ thị như hình vẽ bên.

Cho hàm số \(y = f\left( x \right).\) Hàm số \(y = f'\left( x \right)\) có đồ thị như hình vẽ bên.Hàm số \(g\left( x \right) = f\left( {x + 1} \right) + \frac{{{x^3}}}{3} - 3x\) nghịch biến t (ảnh 1)

Hàm số \(g\left( x \right) = f\left( {x + 1} \right) + \frac{{{x^3}}}{3} - 3x\) nghịch biến trên khoảng nào dưới đây?

Xem đáp án » 26/04/2022 10,219

Câu 2:

Đồ thị của hai hàm số \(y = 4{x^4} - 2{x^2} + 1\) và \(y = {x^2} + x + 1\) có tất cả bao nhiêu điểm chung?

Xem đáp án » 26/04/2022 4,700

Câu 3:

Cho hình chóp \(S.ABCD\) có đáy là hình bình hành. Trên các đoạn \(SA,SB,SC,SD\) lấy lần lượt các điểm \(E,F,G,H\) thỏa mãn \(\frac{{SE}}{{SA}} = \frac{{SG}}{{SC}} = \frac{1}{3},\frac{{SF}}{{SB}} = \frac{{SH}}{{SD}} = \frac{2}{3}.\) Tỉ số thể tích khối \[EFGH\] với khối \(S.ABCD\) bằng:

Xem đáp án » 26/04/2022 3,740

Câu 4:

Cho hàm số \(f\left( x \right)\) có bảng xét dấu đạo hàm như hình bên dưới.

Cho hàm số \(f\left( x \right)\) có bảng xét dấu đạo hàm như hình bên dưới.\(x\)\( - \infty \)                    \( - 3\)                     \( - 2\)                   0                   1 (ảnh 1)

Hàm số \(y = f\left( {1 - 2x} \right)\) đồng biến trên khoảng

Xem đáp án » 26/04/2022 3,360

Câu 5:

Nếu \({a^{\frac{{13}}{{17}}}} >{a^{\frac{{15}}{{18}}}}\) và \({\log _b}\left( {\sqrt 2 + \sqrt 5 } \right) >{\log _b}\left( {2 + \sqrt 3 } \right)\) thì

Xem đáp án » 26/04/2022 2,643

Câu 6:

Cho khối chóp \(S.ABC\) có đáy là tam giác vuông cân tại \(B,SA\) vuông góc với đáy và \(SA = AB = 6a.\) Tính thể tích khối chóp \(S.ABC\).

Xem đáp án » 26/04/2022 2,276
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua