Câu hỏi:
29/04/2022 16,867Tìm tất cả các giá trị thực của m để phương trình \[\left| {{x^4} - 2{x^2} - 3} \right| = 2m - 1\] có đúng 6 nghiệm thực phân biệt.
Quảng cáo
Trả lời:
Phương pháp giải:
- Xét phương trình hoành độ giao điểm, cô lập m, đưa phương trình về dạng \[m = f\left( x \right)\] .
- Để đồ thị hàm số đã cho cắt trục hoành tại 3 điểm phân biệt thì đường thẳng \[y = 2m - 1\] phải cắt đồ thị hàm số \[y = \left| {{x^4} - 2{x^2} - 3} \right|\] tại 3 điểm phân biệt.
- Lập BBT hàm số , từ đó lập BBT hàm số \[y = {x^4} - 2{x^2} - 3\] , \[y = \left| {{x^4} - 2{x^2} - 3} \right|\] và tìm m thỏa mãn.
Giải chi tiết:
Số nghiệm của phương trình \[\left| {{x^4} - 2{x^2} - 3} \right| = 2m - 1\] là số giao điểm của đồ thị hàm số \[y = \left| {{x^4} - 2{x^2} - 3} \right|\] và đường thẳng .
Xét hàm số \[y = {x^4} - 2{x^2} - 3\] ta có \[y' = 4{x^3} - 4x = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = \pm 1}\end{array}} \right.\]
BBT:
Từ đó ta suy ra BBT của đồ thị hàm số \[y = \left| {{x^4} - 2{x^2} - 3} \right|\].
- Từ đồ thị \[y = {x^4} - 2{x^2} - 3\] lấy đối xứng phần đồ thị bên dưới trục \[Ox\] qua trục \[Ox\].
- Xóa đi phần đồ thị bên dưới trục \[Ox\].
Ta có BBT của đồ thị hàm số \[y = \left| {{x^4} - 2{x^2} - 3} \right|\] như sau:
Dựa vào BBT ta thấy đường thẳng \[y = 2m - 1\] cắt đồ thị hàm số \[y = \left| {{x^4} - 2{x^2} - 3} \right|\] tại 6 điểm phân biệt khi và chỉ khi \[3 < 2m - 1 < 4 \Leftrightarrow 4 < 2m < 5 \Leftrightarrow 2 < m < \frac{5}{2}\].
Vậy \[2 < m < \frac{5}{2}\].
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương pháp giải:
- Gọi số tự nhiên có 4 chữ số khác nhau là \[\overline {abcd} {\mkern 1mu} {\mkern 1mu} \left( {a;b;c;d \in \left\{ {0;1;2;3;4;5} \right\},{\mkern 1mu} {\mkern 1mu} a \ne b \ne c \ne d} \right)\].
- Vì \[\overline {abcd} {\mkern 1mu} {\mkern 1mu} \vdots {\mkern 1mu} {\mkern 1mu} 15\] nên \[\left\{ {\begin{array}{*{20}{l}}{\overline {abcd} {\mkern 1mu} {\mkern 1mu} \vdots {\mkern 1mu} {\mkern 1mu} 5 \Rightarrow d \in \left\{ {0;5} \right\}}\\{\overline {abcd} {\mkern 1mu} {\mkern 1mu} \vdots {\mkern 1mu} {\mkern 1mu} 3}\end{array}} \right.\].
- Ứng với mõi trường hợp của d, tìm các cặp số \[a,{\mkern 1mu} {\mkern 1mu} b,{\mkern 1mu} {\mkern 1mu} c\] tương ứng.
Giải chi tiết:
Gọi số tự nhiên có 4 chữ số khác nhau là \[\overline {abcd} {\mkern 1mu} {\mkern 1mu} \left( {a;b;c;d \in \left\{ {0;1;2;3;4;5} \right\},{\mkern 1mu} {\mkern 1mu} a \ne b \ne c \ne d} \right)\].
Vì \[\overline {abcd} {\mkern 1mu} {\mkern 1mu} \vdots {\mkern 1mu} {\mkern 1mu} 15\] nên \[\left\{ {\begin{array}{*{20}{l}}{\overline {abcd} {\mkern 1mu} {\mkern 1mu} \vdots {\mkern 1mu} {\mkern 1mu} 5 \Rightarrow d \in \left\{ {0;5} \right\}}\\{\overline {abcd} {\mkern 1mu} {\mkern 1mu} \vdots {\mkern 1mu} {\mkern 1mu} 3}\end{array}} \right.\].
+ TH1: \[d = 0\], số cần tìm có dạng \[\overline {abc0} \] \[ \Rightarrow a + b + c{\mkern 1mu} {\mkern 1mu} \vdots {\mkern 1mu} {\mkern 1mu} 3\].
Các bộ ba chữ số chia hết cho 3 là \[\left\{ {1;2;3} \right\};{\mkern 1mu} {\mkern 1mu} \left\{ {1;3;5} \right\};{\mkern 1mu} {\mkern 1mu} \left\{ {2;3;4} \right\};{\mkern 1mu} {\mkern 1mu} \left\{ {3;4;5} \right\}\].
⇒ có \[4.3! = 24\] cách chọn \[a,{\mkern 1mu} {\mkern 1mu} b,{\mkern 1mu} {\mkern 1mu} c\].
⇒ Có 24 số thỏa mãn.
TH2: \[d = 5\], số cần tìm có dạng \[\overline {abc5} \] \[ \Rightarrow a + b + c + 5{\mkern 1mu} {\mkern 1mu} \vdots {\mkern 1mu} {\mkern 1mu} 3\] \[ \Rightarrow a + b + c\] chia 3 dư 1.
Các bộ ba chữ số chia 3 dư 1 là \[\left\{ {0;1;3} \right\};{\mkern 1mu} {\mkern 1mu} \left\{ {1;2;4} \right\};{\mkern 1mu} {\mkern 1mu} \left\{ {0;3;4} \right\}\].
⇒ có \[2.2.2! + 3! = 14\] cách chọn \[a,{\mkern 1mu} {\mkern 1mu} b,{\mkern 1mu} {\mkern 1mu} c\].
⇒ Có 14 số thỏa mãn.
Vậy có tất cả \[14 + 14 = 38\] số thỏa mãn.
Đáp án A
Lời giải
Phương pháp giải:
- Góc giữa đường thẳng và mặt phẳng là góc giữa đường thẳng và hình chiếu của nó trên mặt phẳng đó.
- Sử dụng tỉ số lượng giác của góc nhọn trong tam giác vuông để tính góc.
- Sử dụng công thức tính nhanh: Độ dài đường chéo của hình vuông cạnh a là \[a\sqrt 2 \].
Giải chi tiết:
Vì \[SA \bot \left( {ABCD} \right)\] nên \[AC\] là hình chiếu vuông góc của \[SC\] lên \[\left( {ABCD} \right)\].
\[ \Rightarrow \angle \left( {SC;\left( {ABCD} \right)} \right) = \angle \left( {SC;AC} \right) = \angle SCA\].
Vì \[ABCD\] là hình vuông cạnh \[a\sqrt 3 \] nên \[AC = a\sqrt 3 .\sqrt 2 = a\sqrt 6 \].
Xét tam giác vuông \[SAC\] ta có: \[\tan \angle SCA = \frac{{SA}}{{SC}} = \frac{1}{{\sqrt 3 }}\] \[ \Rightarrow \angle SCA = {30^0}\].
Vậy \[\angle \left( {SC;\left( {ABCD} \right)} \right) = {30^0}\].
Đáp án C
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.