Câu hỏi:
29/04/2022 30,649Có bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau, chia hết cho 15 và mỗi chữ số đều không vượt quá 5.
Quảng cáo
Trả lời:
Phương pháp giải:
- Gọi số tự nhiên có 4 chữ số khác nhau là \[\overline {abcd} {\mkern 1mu} {\mkern 1mu} \left( {a;b;c;d \in \left\{ {0;1;2;3;4;5} \right\},{\mkern 1mu} {\mkern 1mu} a \ne b \ne c \ne d} \right)\].
- Vì \[\overline {abcd} {\mkern 1mu} {\mkern 1mu} \vdots {\mkern 1mu} {\mkern 1mu} 15\] nên \[\left\{ {\begin{array}{*{20}{l}}{\overline {abcd} {\mkern 1mu} {\mkern 1mu} \vdots {\mkern 1mu} {\mkern 1mu} 5 \Rightarrow d \in \left\{ {0;5} \right\}}\\{\overline {abcd} {\mkern 1mu} {\mkern 1mu} \vdots {\mkern 1mu} {\mkern 1mu} 3}\end{array}} \right.\].
- Ứng với mõi trường hợp của d, tìm các cặp số \[a,{\mkern 1mu} {\mkern 1mu} b,{\mkern 1mu} {\mkern 1mu} c\] tương ứng.
Giải chi tiết:
Gọi số tự nhiên có 4 chữ số khác nhau là \[\overline {abcd} {\mkern 1mu} {\mkern 1mu} \left( {a;b;c;d \in \left\{ {0;1;2;3;4;5} \right\},{\mkern 1mu} {\mkern 1mu} a \ne b \ne c \ne d} \right)\].
Vì \[\overline {abcd} {\mkern 1mu} {\mkern 1mu} \vdots {\mkern 1mu} {\mkern 1mu} 15\] nên \[\left\{ {\begin{array}{*{20}{l}}{\overline {abcd} {\mkern 1mu} {\mkern 1mu} \vdots {\mkern 1mu} {\mkern 1mu} 5 \Rightarrow d \in \left\{ {0;5} \right\}}\\{\overline {abcd} {\mkern 1mu} {\mkern 1mu} \vdots {\mkern 1mu} {\mkern 1mu} 3}\end{array}} \right.\].
+ TH1: \[d = 0\], số cần tìm có dạng \[\overline {abc0} \] \[ \Rightarrow a + b + c{\mkern 1mu} {\mkern 1mu} \vdots {\mkern 1mu} {\mkern 1mu} 3\].
Các bộ ba chữ số chia hết cho 3 là \[\left\{ {1;2;3} \right\};{\mkern 1mu} {\mkern 1mu} \left\{ {1;3;5} \right\};{\mkern 1mu} {\mkern 1mu} \left\{ {2;3;4} \right\};{\mkern 1mu} {\mkern 1mu} \left\{ {3;4;5} \right\}\].
⇒ có \[4.3! = 24\] cách chọn \[a,{\mkern 1mu} {\mkern 1mu} b,{\mkern 1mu} {\mkern 1mu} c\].
⇒ Có 24 số thỏa mãn.
TH2: \[d = 5\], số cần tìm có dạng \[\overline {abc5} \] \[ \Rightarrow a + b + c + 5{\mkern 1mu} {\mkern 1mu} \vdots {\mkern 1mu} {\mkern 1mu} 3\] \[ \Rightarrow a + b + c\] chia 3 dư 1.
Các bộ ba chữ số chia 3 dư 1 là \[\left\{ {0;1;3} \right\};{\mkern 1mu} {\mkern 1mu} \left\{ {1;2;4} \right\};{\mkern 1mu} {\mkern 1mu} \left\{ {0;3;4} \right\}\].
⇒ có \[2.2.2! + 3! = 14\] cách chọn \[a,{\mkern 1mu} {\mkern 1mu} b,{\mkern 1mu} {\mkern 1mu} c\].
⇒ Có 14 số thỏa mãn.
Vậy có tất cả \[14 + 14 = 38\] số thỏa mãn.
Đáp án A
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương pháp giải:
- Góc giữa đường thẳng và mặt phẳng là góc giữa đường thẳng và hình chiếu của nó trên mặt phẳng đó.
- Sử dụng tỉ số lượng giác của góc nhọn trong tam giác vuông để tính góc.
- Sử dụng công thức tính nhanh: Độ dài đường chéo của hình vuông cạnh a là \[a\sqrt 2 \].
Giải chi tiết:
Vì \[SA \bot \left( {ABCD} \right)\] nên \[AC\] là hình chiếu vuông góc của \[SC\] lên \[\left( {ABCD} \right)\].
\[ \Rightarrow \angle \left( {SC;\left( {ABCD} \right)} \right) = \angle \left( {SC;AC} \right) = \angle SCA\].
Vì \[ABCD\] là hình vuông cạnh \[a\sqrt 3 \] nên \[AC = a\sqrt 3 .\sqrt 2 = a\sqrt 6 \].
Xét tam giác vuông \[SAC\] ta có: \[\tan \angle SCA = \frac{{SA}}{{SC}} = \frac{1}{{\sqrt 3 }}\] \[ \Rightarrow \angle SCA = {30^0}\].
Vậy \[\angle \left( {SC;\left( {ABCD} \right)} \right) = {30^0}\].
Đáp án C
Lời giải
Phương pháp giải:
Hàm số \[y = \frac{{ax + b}}{{cx + d}}\] nghịch biến trên \[\left( {\alpha ;\beta } \right)\] khi và chỉ khi \[\left\{ {\begin{array}{*{20}{l}}{y' < 0}\\{ - \frac{d}{c} \notin \left( {\alpha ;\beta } \right)}\end{array}} \right.\]
Giải chi tiết:
TXĐ: \[D = \mathbb{R}\backslash \left\{ { - m} \right\}\].
Ta có \[y = \frac{{mx + 4}}{{x + m}} \Rightarrow y' = \frac{{{m^2} - 4}}{{{{\left( {x + m} \right)}^2}}}\].Để hàm số nghịch biến trên khoảng \[\left( { - 1;1} \right)\] thì
\[\left\{ {\begin{array}{*{20}{l}}{y' < 0}\\{ - m \notin \left( { - 1;1} \right)}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{m^2} - 4 < 0}\\{\left[ {\begin{array}{*{20}{l}}{ - m \le - 1}\\{ - m \ge 1}\end{array}} \right.}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{ - 2 < m < 2}\\{\left[ {\begin{array}{*{20}{l}}{m \ge 1}\\{m \le - 1}\end{array}} \right.}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{1 \le m < 2}\\{ - 2 < m \le - 1}\end{array}} \right.\].
Lại có \[m \in \mathbb{Z} \Rightarrow m = \pm 1\].
Vậy có 2 giá trị của m thỏa mãn yêu cầu bài toán.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.